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a  b  s  t  r  a  c  t

Biofuel  production  from  microalgae  requires  optimizing  the  operation  of cultivation  systems  (i.e.  outdoor
raceway  ponds)  for this  process  to be economically  sustainable.  Controlling  algal  ponds  is  complex  as the
cultivation  systems  are  exposed  to  fluctuating  conditions.  The  strategy  investigated  in this  study  uses
weather  forecasts  coupled  to a  predictive  model  of  algal  productivity  to optimize  pond  operation.  Pro-
ductivity  was optimized  by dynamically  controlling  rates  of  fresh  medium  injection  and  culture  removal
into  and from  the  pond.  This  optimization  strategy  when  applied  to a cultivation  plant  in Nice,  South
of  France,  increases  the  productivity  by 2.13  compared  to the reference  case  where  the  pond  depth  and
dilution  rate  were  kept  constant  over  time.  The  underlying  Model  Predictive  Control  consists  of play-
ing  with  raceway  pond  thermal  inertia  and  supply  of fresh  water  to  reach  rapidly  optimal  temperature,
and  then  keep  a balance  between  photosynthesis  and  respiration  in  the  darkest  layers  of the raceway
pond.  The  meteorological  inaccuracy  for forecasts  beyond  24  h was  compensated  by frequent  updates
of  the  optimal  control  problem.  Finally,  this  scheme  turned  out  to be robust  to inaccurate  weather  fore-
casts,  and  the  net  productivity  value  reached  was close  to  the  productivity  obtained  for  perfectly  known
meteorology.

©  2017  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Microalgae have emerged during the last decade as one of
the most promising new technologies for providing innovative
molecules for the cosmetic and pharmaceutical industries, and as
a source of proteins for animal and human nutrition [1,2]. At larger
time horizon, microalgae are expected to contribute to fossil carbon
replacement with renewable carbon, especially for supplying green
chemistry and liquid biofuel in the transport sector [3]. The great
interest in this technology is not only the substantial higher pro-
ductivity compared to terrestrial plants, but also the possibility of
coupling the microalgal production process to industrial CO2 miti-
gation and wastewater treatment to finally recycle carbon, nitrogen
and phosphorus.

Nevertheless, further developments and optimization steps are
required to reduce both the cost and the environmental footprint
of these processes. One way to increase the profitability of the
system is to develop control strategies to maximize productivity
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while better managing the nutrient and water use. Controlling an
outdoor algal production system is complex because the state vari-
ables of the cultivation system (e.g. biomass concentration, pond
temperature, etc.) are continuously driven by the meteorological
conditions (solar irradiance, air temperature, etc.). A first approach
was derived by [4] who  used the Pontryagin’s maximum to identify
the set of necessary conditions to be satisfied in order to guarantee
optimal control in a periodically varying environment. Neverthe-
less, the simplifications required by this approach, which assumed
a known and periodic meteorology, reduced the applicability of the
proposed optimal strategy in the case of algal outdoor cultivation.

Model Predictive Control (MPC) [5] has proven to be very effi-
cient to manage situations with complex modelling, where classical
model based control cannot be easily derived. MPC  seems espe-
cially relevant when meteorology plays a key role, such as energy
efficient building climate control [6] or management of distributed
power system with wind turbines [7]. MPC  was already applied to
microalgae [8–10], but never to manage weather forecasts in the
control strategy.

Alternatively, we propose a MPC  strategy accounting for the
knowledge of future weather conditions. This technique is based
on mathematical models able to predict algal productivity from
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the knowledge of weather conditions [11,12]. In practice, this opti-
mization task consists of determining the optimal rates at which
fresh medium has to be injected into or extracted from a mixed
algal pond (also named “raceway”) based on weather forecasts.
The first objective of this study was to propose an improvement
to the standard management approach, and assess the produc-
tivity gain of this optimized approach. The secondary objective
was to understand and analyze the rational behind the predictive
controller.

We first detail the model consisting in a coupled biology-
physical model. Then we define the model predictive controller
and we detail the numerical approach developed for solving the
problem. We  first consider the case where weather forecasts are
perfect, and we analyse the logic behind the control action. Finally,
we consider the more realistic case where meteorology becomes
uncertain after 24 h.

2. The microalgal raceway pond productivity model

The model couples two submodels: a physical submodel pre-
dicting the temperature in the raceway pond and a biological
submodel computing microalgal production. Both submodels are
driven by meteorological conditions determining the fluxes of
heat and photons through the system. The model has a triangu-
lar structure since the biological submodel does not influence the
thermal dynamics of the physical submodel. The model is a sim-
plified version of the model in [13]. However in [13], the pond
depth is maintained at a constant level, while here we exploit the
idea of changing the depth to modify the thermal inertia of the
system.

The scheme of the model structure (coupling biological and ther-
mal  equations) and the objective function is shown in Fig. 1. The
model equations are detailed in the following paragraphs.

Fig. 1. Schematic representation of the models implemented in this work. The
arrows show the interconnection between the various models.

2.1. Deriving the biological model from mass balance

The biological model describes the dynamics of a microalgal
biomass (which concentration is x(t) in kg m−3). Microalgae are
photosynthetic microorganisms which capture CO2 in the presence
of light and incorporate this carbon into their biomass, while they
continuously loose a fraction of their carbon by respiration. Both
activities are temperature dependent. The open algal raceway pond
of volume V (m3) and depth lp(t) (m)  is supposed to be perfectly
mixed [14,15]. The total biomass x(t)V(t) in the open raceway pond
varies over time according to the following equation:

d(x(t)V(t))
dt

= −x(t)qout(t) + G( · )V(t) − R( · )V(t), (1)

where t is the time variable (s), G(·) is the depth-averaged specific
growth rate (kg m−3 s−1) and R(·) is the specific respiration rate
(respiration causes carbon loss) (kg m−3 s−1). The fresh medium is
injected at the rate qin(t) (m3 s−1) whereas the culture is extracted
from the raceway pond at the rate qout(t) (m3 s−1).

The raceway pond volume varies over time according to the
following equation:

dV(t)
dt

= qin(t) − qout(t) + vr(t)S − me(t)S
�w

, (2)

where S is the raceway pond surface area (m2), �w is the water
density (kg m−3), vr(t) is the rainwater flow (m s−1), and me(t) is
the evaporation mass flux (kg m−2 s−1). The average specific growth
rate G(·) in Eq.(1) depends on the biomass concentration x(t), the
raceway pond temperature Tp(t), and the solar irradiance Hs(t)
(W m−2). The resulting function G(t, x(t), Hs(t), Tp(t)) was expressed
as [16,17]:

G(t, x(t), Hs(t), Tp(t)) = 1
lp(t)

∫ lp(t)

0

�mx(t)
��HHs(t)e−�x(t)z

KI + ��HHs(t)e−�x(t)z
dz

(3)

where �m is the maximum specific growth rate (s−1), � is the
extinction coefficient (set at 120 m2 kg−1), due to light absorption
and scattering, �H is the photosynthetically active radiation (PAR)
fraction of solar light (set at 0.47 [17]), z is the local depth (m)  and
KI is the half-saturation parameter (W kg−1).

The impact of photoinhibition on microalgal growth was not
explicitly included in this study. Indeed, as suggested by [11],
a Monod kinetics can efficiently represent algal growth at high
biomass density. This is explained by the fact that only a small frac-
tion of cells are photo-inhibited in the dense cultures, leading to an
average behaviour of Monod type.

The specific respiration rate R(·) in Eq.(1) depends on raceway
pond temperature Tp(t) and biomass concentration x(t) through the
following equation:

R(t, x(t), Tp(t)) = �r(Tp)x(t), (4)

where �r is the respiration coefficient (s−1). The temperature
dependence of the two functions G(·) and R(·) is justified by exper-
imental evidences demonstrating that �m, KI and �r values change
with temperature (see [17]). Function �m(Tp) could be experimen-
tally described by the following equation [18]:

�m(Tp) = �m,max�T (Tp), (5)

where �m,max is the maximum value of �m(Tp) (s−1) and �T(Tp)
is the temperature-dependent function reported in the following
equation [18]:
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