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a  b  s  t  r  a  c  t

Process  nonlinearity  is a challenging  issue  for soft  sensor  modeling  of industrial  plants.  Traditional  nonlin-
ear  soft  sensing  methods  are  not  achieved  through  the  probabilistic  manner,  which  only  give single point
estimation  for  output  variables  but  do not  provide  the  prediction  uncertainty.  To  meet  the  probabilistic
soft  sensor  requirement,  a  novel  density-based  regression  method,  which  is  called  weighted  Gaussian
regression  (WGR),  is proposed  in  this  paper.  By  taking  the  weights  of training  samples  into  consideration,
a  local  weighted  Gaussian  model  (WGM)  is first built to model  the joint  density  P(x,  y) of  input  and  output
variables  around  the  query  sample.  Then,  the output  variables  can  be estimated  by  taking  the conditional
distribution  P(y|x). The  new  method  can  successfully  approximate  the  nonlinear  relationship  between
output  and input  variables.  Moreover,  WGR  can  provide  more  detailed  information  of uncertainty  for  the
prediction.  The  effectiveness  and  flexibility  of  WGR  are  validated  through  a  numerical  example  and  an
industrial  debutanizer  column  process.

© 2017  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Nowadays, online accurate identification of quality variables
is of significant importance for successful monitoring and control
of industrial processes [1–3]. In many situations, it is difficult to
timely measure the quality variables due to the measurement dif-
ficulties like severe measuring circumstance, expensive analyzer
cost and large time delay, etc. As a result, these measurement
limitations may  cause a lot of disadvantages on the process produc-
tion, like product quality degradation, energy loss, toxic byproduct
generation, and safety risk problem. Thus, soft sensors have been
developed to estimate the difficult-to-measure variables y through
those easy-to-measure process variables x by inferential mod-
els [4–7]. As alternatives for hardware sensors, soft sensors can
provide highly efficient and low-cost prediction for the quality
variables. In general, there are mainly three different categories of
soft sensors, which are first-principle models [8–10], data-driven
models [11–13] and hybrid models [14–16]. First-principle mod-
els are often difficult to obtain, especially for complicated modern
industrial processes. Instead, data-driven soft sensors can be easily
obtained thanks to the access of vast process data, which can largely
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reduce the amount of engineering knowledge. Hence, they have
gained more and more popularity in both academia and industry.

For a soft sensor, the main task is to train a regression model
y = f(x) between y and x from existing datasets. Hence, the key fac-
tor to a successful soft sensor is choosing an appropriate regression
model for the specified process. Multivariate statistical methods
like principal component regression (PCR) [17] and partial least
squares regression (PLSR) [18], artificial neural networks (ANN)
[19] and support vector machine (SVM) [20] are some typical
regression-based approaches. Numerous of successful applications
have been reported in processes like chemical engineering, bio-
chemical engineering, metallurgical engineering pharmaceutical
industries by these approaches. [21–24] However, most of these
methods are carried out in deterministic ways. The random noises
and variable uncertainty are not taken into consideration for mod-
eling. Hence, it can only give single point predictions for the
outputs. For many applications, it is important to provide the quan-
tification about the prediction uncertainty, like the probabilistic
bounds. Actually, process data are often contaminated by random
noises and uncertainty as a result of measurement variations and
transmission disturbances. It is more reasonable to take these vari-
ables as random variables and carry out data modeling in the
probabilistic framework. In this way, the vector regression function
y = f(x) is expressed by density-based methods [25–27].
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In the probabilistic modeling framework, input and output vari-
ables are described by means of the probability distribution or
probability density. To estimate the function y = f(x), the joint den-
sity of input and output P(x,y) is first estimated in the density-based
methods. Then, the conditional distribution of output over input
variables can be obtained as P(y|x). Given a particular input vec-
tor xnew , the output can be predicted from the conditional density
P(ynew|xnew) by easily substituting xnew for x [25]. Different from
the regression-based methods, which only give single point estima-
tion for ynew , density-based approaches can provide a probabilistic
distribution of the output variables ynew . If one wishes to obtain
a single prediction of ynew by density-based methods, it is eas-
ily to calculate the expectation of ynew given xnew . That is ŷnew =
E(ynew|xnew). There are a lot of advantages to exploit density-based
methods for data modeling. For example, it can handle dataset with
missing values by expectation-maximization algorithm [28]. Also,
it is very easy to estimate any relationship between two subsets of
these variables in vector (x,y). Furthermore, as mentioned before,
it can give not only a point estimation for the output, but also a
probabilistic distribution for it.

Hence, the most important thing of density-based methods is
to find the approximate density model to describe the data struc-
ture. As a basic density function, Gaussian probabilistic distribution
is the most commonly used data density model for continuous
variables in reality. For many process data, they can be roughly
approximated by Gaussian distribution. Since Gaussian distribu-
tion is simple to implement, it can largely reduce the complexity
of modeling procedure. Although Gaussian density has a lot of suc-
cessful applications, it suffers from significant limitations when it is
used to model complicated industrial data due to its linear assump-
tion of data relationship. As most industrial processes are nonlinear
naturally, approximation by simple Gaussian model is not sufficient
to capture data structure accurately. Hence, it is desirable to exploit
a more robust density model to handle process nonlinearity. To deal
with this problem, Gaussian mixture model (GMM) [29] has been
developed to better characterize data structure by simple linear
superposition of Gaussian components. GMM  can give rise to very
complex data distributions. Moreover, it can approximate almost
any continuous density to arbitrary accuracy by using a sufficient
number of Gaussians, and adjusting their means and covariances as
well as the coefficients in the linear combination. Therefore, GMM
is a useful modeling tool for data description with nonlinear struc-
ture [30–33]. Nonetheless, there are still some limitations for the
application of GMM.  First, it is usually very difficult to determine
the approximate number of Gaussian components. If the number
of components is too small, it cannot provide a satisfactory approx-
imation for the real dataset. Otherwise, too many components will
result in over-fitting problems. Second, to meet the predefined
approximation accuracy, a large number of components may  be
required for GMM.  This can largely increase the computing burden
and model complexity. Moreover, it may  cost a lot of time to train
the model when the number of Gaussian components is very large.

To alleviate the aforementioned problems, a novel weighted
Gaussian model (WGM)  is proposed for nonlinear data descrip-
tion in this paper, which is conceptually simple to understand and
quite easy to implement. This method has been motivated by locally
weighted learning (LWL) [34,35]. LWL  is based on the idea that
the complicated nonlinear surface can be approximated by nearby
points using distance weighted regression. In the proposed WGM,
the distances will first be calculated between the historical samples
and the query sample when the output prediction is required for the
query sample. Then, the weights for historical samples can be com-
puted according to the calculated distances. Usually, the weight is
a decreasing function with the distance since distant points have
less relevance with the query while close ones should occupy more
relevance. After that, a weighted Gaussian model is built around the

query sample that can capture the local data structure around the
query sample with great accuracy. This is achieved by designing
a weighted log-likelihood function for the joint input and out-
put dataset. By maximizing the weighted log-likelihood function, a
local Gaussian model is trained to locally fit the complex surface. At
last, by taking the conditional density function of outputs given the
inputs, the output distribution for the query data can be estimated.
In this paper, this Gaussian density-based approach is referred to
as weighted Gaussian regression (WGR).

The remaining parts of this paper are organized as follows. In
Section 2, preliminaries about Gaussian model and mixture Gaus-
sian model are simply revisited. Then, the weighted Gaussian model
and weighted Gaussian regression are introduced in detail in Sec-
tion 3. After that, two case studies are carried out to validate the
effectiveness and flexibility of the proposed method in Section 4.
At last, Section 5 provides some conclusions.

2. Preliminaries

Gaussian density distribution, or Gaussian model, is the most
widely used method for data structure description. Assume the
input vector is x ∈ Rn and the output vector is y ∈ Rm, where n and
m are the dimensions of input and output variables, respectively.
The joint vector of input and output is denoted as z = [xT , yT ]

T
,

where z ∈ Rn+m. For simplicity, we  denote d = n + m.  The observed
historical data samples are (X, Y) = {(xi, yi)}i=1,2,...,N . Correspond-
ingly, the joint vector data are Z = {zi} , i=1,2,...,N. If Gaussian model
is used to represent the joint data distribution, it is expressed with
the following formula

P(z|�) = 1√
(2�)d|�|

exp
{

− 1
2

(z − �)T�−1(z − �)
}

(1)

where � is the mean vector and � is the covariance matrix, and � ={
�, �

}
are the parameters to determine a Gaussian distribution.

To obtain the parameters of the Gaussian model, one can simply
maximize the following log-likelihood function of observed data.

L(Z, �) =
N∑
i=1

ln P(zi|�) (2)

However, Gaussian model is not sufficient to describe nonlinear
data distribution. In this way, Gaussian mixture model is exploited
to better characterize data structure. GMM  is constructed by simple
linear superposition of Gaussian components, which is expressed
as

P(z|˝) =
K∑
k=1

�kP(z|�k) (3)

where K is the number of Gaussian components in GMM.  �k is
the probabilistic ratio of the kth Gaussian component and sub-

jects to condition of �k ≥ 0,
K∑
k=1

�k = 1. �k =
{
�k, �k

}
represent

the parameters that define the kth Gaussian component, which
are the mean vector �k and the covariance matrix

∑
k. Then the

total parameters in the complete GMM  with K components can
be defined as ˝={{ω1, �1,

∑
1}, {ω2, �2,

∑
2}, · · ·{ωK, �K,

∑
K }},

which involve both the Gaussian model parameters �k and the
mixing probabilities ωk (1 ≤ k ≤ K). The parameter set of GMM  can
be estimated by maximizing the following log-likelihood function
using the expectation-maximization algorithm

L(Z, ˝)  =
N∑
n=1

log(
K∑
k=1

ωkf (zn|�k)) (4)
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