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a  b  s  t  r  a  c  t

A  method  to  generate  geometric  pseudo-spectral  spatial  discretization  schemes  for  hyperbolic  or
parabolic  partial  differential  equations  is  presented.  It  applies  to the  spatial  discretization  of  systems
of  conservation  laws  with  boundary  energy  flows  and/or  distributed  source  terms.  The  symplecticity  of
the proposed  spatial  discretization  schemes  is  defined  with  respect  to the  natural  power  pairing  (form)
used  to  define  the  port-Hamiltonian  formulation  for  the considered  systems  of  balance  equations.  The
method  is applied  to the  resistive  diffusion  model,  a  parabolic  equation  describing  the  plasma  dynam-
ics  in  tokamaks.  A symplectic  Galerkin  scheme  with  Bessel  conjugated  bases  is derived  from  the  usual
Galerkin  method,  using  the proposed  method.  Besides  the spectral  and  energetic  properties  expected
from  the  symplecticity  of  the method,  it  is shown  that  more  accurate  approximation  of  eigenfunctions
and  reduced  numerical  oscillations  result  from  this  choice  of conjugated  approximation  bases.  Finally,
the obtained  numerical  results  are  validated  against  experimental  data  from  the  tokamak  Tore  Supra
facility.
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1. Introduction

Hamiltonian operators are classically used to represent the
dynamics of many closed systems of conservation laws. Recently
port-Hamiltonian (PH) extensions have been introduced to model
open systems with boundary or distributed energy flow [29,20].
This modelling approach has proven to be fruitful for the modelling,
simulation and control of many hyperbolic systems such as trans-
mission line models [13], beam equations [18] or shallow water
equations [15]. However, the same approach may as well be applied
to “first principle” parabolic examples such as transport models for
adsorption columns [3], fuel cells [11] or diffusion in Ionic Polymer-
Metal Composites [23]. Both hyperbolic and parabolic examples
make use of a Stokes-Dirac interconnection structure for the real-
ization of the balance equations (e.g. mass, entropy, momentum,
etc.).

In the spatial discretization of distributed parameters systems
as well as in geometric time integration for ordinary differen-
tial equations, pseudo-spectral methods are often chosen because
they lead to low order approximate models, with accurate spec-
tral properties (in the linear case, see for instance [10]). Accurate
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spectral properties and low order models are obviously impor-
tant features for the design, supervision and control engineering
problems. However it is known that key system theoretic prop-
erties (both internal or input–output) may  be lost in the spatial
discretization of distributed parameters systems, when using these
pseudo-spectral methods without any additional considerations
(as it is also the case for finite-difference schemes). One way of
avoiding such problems in the numerical integration of closed
Hamiltonian models is to consider geometric methods, i.e. methods
which preserve some conserved quantities and/or the geometric
interconnection structure of the original model [14]. The latter are
usually referred to as symplectic integration methods. The sym-
plecticity is then defined with respect to some Poisson structure.
However, these methods usually apply only to the time-integration
of closed Hamiltonian systems and not to the spatial discretization
of open port-Hamiltonian systems. It must be noticed however that
multi-symplectic methods have been developed for the simulta-
neous space and time integration (i.e. total discretization) of infinite
dimensional closed Hamiltonian models [26].

In this paper we define how to systematically build a sym-
plectic spatial discretization scheme for open port-Hamiltonian
systems, starting from any given non symplectic pseudo-spectral
discretization method (see for instance [9] for a general presenta-
tion of classical pseudo-spectral methods). Generalizing previous
ideas from [6] (mixed finite elements methods) or [22] (mixed
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orthogonal collocation) we define several approximation bases
for the thermodynamical variables, according to their geometric
nature (i.e. the degrees of the corresponding differential forms).
Then the balance (or conservation) equations and the constitutive
(closure) equations are projected into the chosen approximation
spaces in order to preserve a power pairing form. The symplectic-
ity of the built mixed pseudo-spectral method is thus defined wit
respect to this power pairing form, which acts on the distributed
and boundary port variables (i.e. the input–output variables).

A second contribution of the paper is related to the choice of
approximation spaces. In the proposed construction of mixed sym-
plectic pseudo-spectral spatial discretization methods, the chosen
approximation spaces have to be compatible (conjugated) to guar-
antee the preservation of the power pairing form. Otherwise
they could theoretically be chosen quite freely. Classical choices
for the approximation spaces are for instance those spanned by
Fourier, wavelets or polynomial bases. Not much has been writ-
ten however about how to choose practically the approximation
space among these many possibilities, in the general case. In this
work we suggest the use of approximation spaces spanned by
conjugated bases of eigenfunctions associated to a simplified prob-
lem, this problem being derived by linearization of the original
distributed parameters system and spatial uniformization of its
parameters. Besides accurate eigenvalues approximations, such
choices also provide accurate accurate eigenfunctions approxi-
mations. We  show on the considered resistive diffusion example
how this choice may  solve some numerical oscillation prob-
lem encountered with distributed actuation or sharp initial
conditions.

To illustrate the approach we have chosen to apply these
ideas on the example of the port-Hamiltonian formulation for the
1D resistive diffusion equation [5]. It is a simple plasma control
model for the radial diffusion of the poloidal magnetic flux in a
tokamak facility. It is a parabolic problem which still may  be writ-
ten in the port-Hamiltonian formalism using a skew symmetric
interconnection structure and toric magnetic coordinates with a
homogeneous boundary condition at the center (for symmetry) and
a non autonomous (controlled) boundary condition at the outer
radius. In this example classical (non symplectic) finite difference
or collocation spatial discretization schemes give rise to unwanted
numerical oscillating (or even unstable) modes. Simulation results
obtained with the proposed symplectic reduction scheme have
been validated and compared with experimental data obtained
from a discharge of the tokamak Tore Supra discharge (this device
is described in [21]).

The paper is organized as follows. In Section 2 we recall existing
results on the port-Hamiltonian formulation for open distributed
parameter systems. In Section 3 we present the proposed method-
ology to build mixed symplectic spatial discretization schemes,
starting from classical pseudo-spectral methods. In Section 4, we
derive a mixed Galerkin method for the resistive diffusion problem,
using conjugated approximation bases spanned by Bessel’s func-
tions. In Section 5.1, we analyze numerical results obtained for the
resistive diffusion equation with non-uniform resistivity and dis-
tributed non inductive current. These numerical results are also
compared against experimental data.

2. Port-based modelling for systems of balance equations
with boundary energy flows

Quite recently, an intrinsic formulation of port-based models
for distributed parameter systems (described by partial differ-
ential state space equations) with boundary energy flow have
been proposed [29]. It is based on the definition of the state
variables as the densities of some thermodynamical extensive

variables. The time derivatives of these variables and their
conjugated intensive variables1 form together the pairs of vari-
ables which are used to define a power pairing form and a
port-Hamiltonian formulation for systems of conservation laws.
Using these variables the usual port Hamiltonian formulation is
extended to the infinite-dimensional systems using a canonical
geometric interconnection structure called Stokes-Dirac struc-
ture [29]. We  shall now briefly recall the definitions of these
Stokes-Dirac structures and port-Hamiltonian extensions for dis-
tributed parameter systems in the 1D case, with a spatial domain
� = [0, L].

2.1. Hamiltonian formulation for systems of conservation laws

We  shall define the conserved quantities as 1-forms on the inter-
val � = [0, L], whose space will be denoted �1(�). Once a coordinate
x (i.e. a measure dx)  has been chosen on the interval �, the 1-
form  ̨ ∈ �1(�)  may  be written, using this coordinate,  ̨ = ˛ (x)dx
where ˛ (.) denotes a smooth function. The state space of a sys-
tem of two  conservation laws is the product space �1(�)  × �1(�).
The space of 0-forms, that is smooth functions on the interval �,  is
denoted by �0(�).

The symbol ∧ will denote the exterior product of k-forms and d
the exterior derivative.2 We  shall make use the Hodge star � oper-
ator associated with the measure dx of the real interval �.  In the
coordinate x, the Hodge star product of the 1-form ˛ (x)dx is simply
the 0-form: ˛ (x).

Between 0-form �0(�)  �  ̌ and 1-form �1(�) � ˛, one may
define a bilinear form

〈ˇ|˛〉 :=
∫
�

 ̌ ∧  ̨ ( ∈ R) (2.1)

which is simply expressed in coordinates as 〈ˇ|˛〉 :=∫
�
ˇ (x) ˛ (x)dx. The bilinear form (2.1), also referred in this

paper as the natural power-pairing,  is non-degenerate in the
sense that if 〈ˇ|˛〉=0 for all  ̨ (respectively for all ˇ), then  ̌ = 0
(respectively  ̨ = 0). For real-valued functions � i ∈ �0(∂�), i = 1, 2
associated the spatial domain boundary ∂� =

{
0, L

}
, we define

the non-degenerated bilinear form:

〈�1, �2〉∂ =
∫
∂�

�1 ∧ �2 = �1 (L)�2 (L) − �1 (0)�2 (0)

Consider an energy density 1-form H : �1(�) × � → �1(�) and
denote by H :=

∫
�
H ∈ R  the associated Hamiltonian function.

Then for any 1-form ω ∈ �1(�) and any variation �ω ∈ �1(�)
with compact support strictly included in � and any 	 ∈ R, it may
be proven that [29]:

H(ω + 	�ω) =
∫
�

H (ω + 	�ω) =
∫
�

H (ω) + 	

∫
�

[
ıH

ıω
∧ �ω

]
+ O

(
	2

)
for a uniquely defined 0-form which will be denoted ıH

ıω
∈ �0(�)

and which is called the variational derivative of H with respect to  ̨ ∈
�1(�). It should be noticed that when H only depends on ω (and not

1 Such pairs of conjugated variables are, for instance, the entropy density flow and
the  temperature in the thermal domain, the momentum density and the velocity in
the  kinetic domain, the pressure and the volumetric flow in the hydraulic domain,
etc.

2 Actually in the case of a 1D domain these operations become quite trivial. The
wedge product of 0-forms, i.e. functions, is simply their product and the wedge prod-
uct of a 0-form with a 1-form is again simply the usual product of the 1-form by the
0-form.  The only non-trivial exterior derivation acts on 0-forms and is written with
the  coordinate x: dˇ(x) = ∂ˇ

∂x (x) dx.
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