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a  b  s  t  r  a  c  t

In this  work,  we  present  an  approach  to construct  generalized  Hamiltonian  representations  for  thermo-
mechanical  systems.  Using  entropic  formulation  of  thermodynamic  systems,  the  construction  is applied
to a class  of  thermo-mechanical  systems.  The  proposed  approach  leads to  an explicit  expression  of  the
dissipation  along  the  trajectories  of  the dynamics.  The  considered  thermo-mechanical  systems  are,  in a
thermodynamical  sense,  systems  for which  the  dynamics  of the extensive  variables  are  functions  of  the
intensive  variables  with  respect  to an  entropic  formulation.  Using  the  entropy  as  the  storage  function,  the
dissipative  structures  of an  analogue  to  a port-controlled  Hamiltonian  (PCH)  representation  are  identified
with  irreversible  phenomena,  while  the conservative  structures  are  identified  with  reversible  or  isen-
tropic  phenomena.  Examples  are  presented  to  illustrate  the  application  of the  proposed  methodology,
including  a reacting  system.

©  2017  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Dissipative and passive systems constitute a very important
class of dynamical systems [1] for which the dissipated energy,
been the difference between the stored energy variation with the
system and the amount of energy supplied by the environment, is
always non-negative. In view of this energy–dissipation feature, it
is clear that dissipativity and passivity are intimately related to sys-
tem stability. In this context, it has been shown that many physical
processes may  be dissipative, including those that obey the laws
of thermodynamics [2], since dissipativity, like irreversibility in a
thermodynamic system, captures the idea that some mechanical,
electrical or chemical energy is dissipated as heat.

Using dissipativity and passivity properties to develop stability
conditions and feedback stabilization design techniques for electri-
cal and mechanical systems is well-established [3]. However, this
development has shortcomings when applied to chemical systems
[4], particularly when chemical reactions occur. Indeed, chemical
processes models are written in such a way that dissipative and
conservative structures are not explicit and depend on intensive
variables and although in some cases the total mass and energy
remain constant, the system still has, in some sense, dissipative
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phenomena that lead to a certain steady state and one interesting
question is what does it dissipate? Hence, one has to find decom-
position approaches to identify those dissipative and conservative
structures. A solution adopted by many consists in considering
extensive variables rather than intensive variables for chemical
process systems analysis purposes, an approach related to mul-
tidomain modelling reviewed in [5] adapted to thermodynamic
systems. This approach, based on the Legendre transformation
with respect to a known potential (the energy or the entropy),
was considered within the framework of passivity theory in [6,7].
More recently, the idea of representing the dynamics of a system
using both intensive and extensive variables was  considered in
[8].

Alternatively, the port Hamiltonian (PH) approach, as described
in [9] and successfully adopted for electrical and mechanical sys-
tems, was also considered for the analysis of thermodynamical
systems [10]. Generally speaking, the Hamiltonian function refers
to any energy function, while Hamiltonian systems are dynami-
cal systems governed by Hamilton’s equations. Thus, PH systems
are open dynamical systems that interact with their surroundings
through ports, and whose geometric structures are derived from
the interconnection of their sub-systems. In addition PH systems
provide a framework for the geometric description of network
models of physical systems, where the dissipative and conserva-
tive structures can be explicitly expressed in the interconnection
matrix [11]. Based on this general framework, some efforts have
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been recently done to use physical variables as storage functions
for chemical processes analysis [see for instance [4,8,10,12]].

Due to the potential advantages mentioned above, the central
objective of this work is to show how to derive a structural repre-
sentation for a large class of thermo-mechanical systems in the port
Hamiltonian systems in order to express explicitly the dissipation
along the trajectories of the dynamics. In the present paper, entropy
is used as the storage function instead of energy. As a result, dis-
sipative structures directly outline irreversible phenomena, while
conservative structures identify reversible (isentropic) phenomena
within the process. If we compare our proposed approach to those
given in the literature, it is noted that identifying dissipative and
conservative structures reduces computations for chemical sys-
tems analysis. For example, computations of stability conditions
in [10], where a thermodynamic potential is considered for sta-
bility, and in [8], where a particular thermodynamic geometric
framework is considered for design, are cumbersome because the
balance equations are not written with identified conservative and
dissipative structures.

The paper is organized as follows. In Section 2, the class
of thermo-mechanical systems under study is defined and its
thermodynamic properties are analyzed. The representation of
thermo-mechanical systems as port Hamiltonian systems using
entropy is presented in Section 3. The adiabatic gas–piston sys-
tem studied in [13] is used throughout to illustrate the different
elements of the proposed methodology. The study of this system
shows that the approach is developed in a general form, and can be
apply directly to any system that can be arbitrarily decomposed as
interconnected subsystems. Then, in Section 4, two  complete case
studies of thermo-mechanical systems are developed: an adiabatic
liquid pendulum system, and an adiabatic gas–piston system with
chemical reactions.

2. Lumped-parameter thermo-mechanical systems

Let us consider a system � composed of n subsystems
where thermodynamical and/or mechanical phenomena are tak-
ing place, for instance gas expansion, heat transfer, displacement
and movement of mechanical components, etc. Each subsystem is
characterized by a set of thermodynamical extensive properties,
for instance {Ni, Ui, Vi}, its associated thermodynamical intensive
properties, for instance { − �i, Ti, Pi} [14], and its mechanical prop-
erties, for instance {zi, mipi}, where Ni ∈ R

Ci+, Ui ∈ R  and Vi ∈ R
+

are the moles, energy and volume inventories, with Ci as the num-
ber of chemical species interacting in the subsystem, and �i ∈ R

Ci ,
Ti ∈ R

+ and Pi ∈ R
+ are the chemical potential, and the absolute

temperature and pressure of subsystem i, with i = 1, 2, . . .,  n, respec-
tively. Finally zi,

pi = mivi (1)

and

mi = MT
w,iNi (2)

are the subsystems position, momentum and mass, respectively,
with Mw,i ∈ R

Ci+ the molar mass vector, and vi as the velocity.
Depending on the particular configuration and characteristics of
each subsystem, the state variables, �i ∈ R

ˇi , are selected within
the set of the extensive and motion variables. For instance, if the
process is isochoric, then the state variables vector may  be defined
as � = col{N, U} ∈ (RC+ × R), while for isochoric systems with only
one incompressible moving solid, the state variable may  be defined
as � = {U, z, mv} ∈ R

3. In this work it is assumed that each sub-
system is homogeneous, i.e.,  there is no spatial dependence in the
considered thermo-mechanical systems. It is also considered that

Fig. 1. Adiabatic piston from [13].

system � may  interact with one or more surrounding systems,
therefore the dynamical model under study is expressed as

� : �̇ = Mf (�) + g(�, �s)F, (3)

where � = col{�i, i = 1, 2, . . .,  n} ∈ R
ˇ, with dimension

 ̌ =
∑n

i=1ˇi, and �s ∈ R
s represent the vectors of extensive

and motion properties of the system and its surroundings, respec-
tively. The vector field f : R

ˇ → R
p contains the kinetic expressions

for reaction, transport, motion or mechanical phenomenon that
take place within the system, while matrix M ∈ R

ˇ×p contains the
stoichiometric coefficients for each reaction, transport, motion
and mechanical phenomena. The flow vector F ∈ R

m takes into
account the exchange with the surroundings (it could contain
volumetric, molar or mass flows and/or external forces), while the
columns of g(�, �s), gi : (Rˇ × R

s) → R
ˇ, are associated with the

extensive and motion properties exchanged with the surroundings
through the flow or external force Fi, i = 1, 2, . . .,  m.

For instance, let us consider an adiabatic gas–piston system sim-
ilar to the one described in [13] and shown in Fig. 1. For simplicity,
the gas is assumed ideal and denoted subsystem 1, while the piston
is denoted subsystem 2.

Under the ideal gas assumption, the adiabatic piston model
takes the form

• Subsystem 1: Balances equations for the internal energy, U1, and
volume, V1, of the gas

U̇1 = �(T2 − T1) − Av2P1,

V̇1 = Av2.

• Subsystem 2: Balance equations for the internal energy, U2, posi-
tion, z2, and velocity, v2, of the piston

U̇2 = −�(T2 − T1) + ˛v2
2,

ż2 = v2,

m2v̇2 = AP1 − Fext − m2g − ˛v2,

where T1 and T2 are the gas and piston temperatures, respectively,
P1 = N1RgT1/V1 is the gas pressure, with N1 and Rg denotes the mole
number in the chamber and the ideal gas constant, respectively.
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