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Traditional control charts, such as Hotelling’s T2, are effective in detecting abnormal patterns. However,
most control charts do not take into account a time-varying property in a process. In the present study,
we propose a parameter-less self-organizing map-based control chart that can handle a situation in
which changes occur in the distribution or parameter of the target observations. The control limits of
the proposed chart are determined by estimating the empirical level of significance on the percentile
using the bootstrap method. Experimental results obtained by using simulated data and actual process
data from the manufacturing process for a thin-film transistor-liquid crystal display demonstrate the
effectiveness and usefulness of the proposed algorithm.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Statistical process control (SPC) is a popular technique for pro-
cess monitoring. A control chart is a widely used tool in SPC to
detect the abnormal status of a process and maintain control of the
process [1]. The Shewart control chart is the most popular of these
charts. Itis used to efficiently monitor the quality of a single process
variable when the process data are normally distributed. However,
univariate control charts like the Shewart may not be appropri-
ate for modern manufacturing systems in which a process may
simultaneously affect a number of correlated quality variables. Var-
ious multivariate control charts have been proposed to achieve this
simultaneous monitoring of correlated variables. One of the most
widely used is Hotelling’s T2 control charts that assume that mul-
tivariate normal distribution governs the underlying distribution
of the process observations [2,3]. However, the actual distribution
is usually unknown and difficult to estimate accurately, especially
when the number of samples is not sufficiently large enough to
approximate the asymptotic distribution [4]. Further, many mod-
ern manufacturing systems exhibit nonlinearity because of their
complicated processes. In such cases, the unregulated use of a linear
modeling approach such as a T2 chart may not be effective [5].
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Numerous monitoring methods have been developed to address
the limitations of traditional control charts. Nonlinear principal
component analysis (PCA) methods were proposed to address the
nonlinearity of modern manufacturing systems [6-8]. Kramer [6]
proposed a nonlinear PCA technique that used an auto-associative
neural network. Dong and McAvoy [7] developed a nonlinear PCA
method based on the principal curve and the neural network. Hiden
et al. [8] addressed the same problem by combining genetic pro-
gramming and nonlinear PCA. Recently, a monitoring method based
on kernel PCA was proposed to address a nonlinear process [9-13].
Kernel PCA has an advantage over other nonlinear PCA meth-
ods because it does not require nonlinear optimization. However,
kernel PCA contains an assumption that the observations in the
extended space conform to a Gaussian distribution. Thus, selec-
tion of an optimal number of PCs in the kernel space is important
[11,13,14].

The Gaussian mixture model (GMM) is another method devel-
oped to address the nonlinear property of data [5]. The GMM uses a
combination of Gaussian components to describe the data set from
complex industrial processes. The number of Gaussian components
can be determined automatically by the F-J algorithm, which is a
variant of an expectation-maximization algorithm [15]. Hence, the
combination of the Gaussian components approximates the nonlin-
ear process [5]. However, when the observations described by each
of the Gaussian components do not follow a Gaussian distribution,
the results from a GMM-based control chart may be unsatisfac-
tory [16,17]. It is possible that monitoring performance may soon
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be improved with the emergence of different non-Gaussian data-
modeling techniques [5,18].

Another alternative is a self-organizing map-based control
chart. Yu and Xi [21] proposed a minimum quantization error
(MQE) chart based on a self-organizing map (SOM). Because a neu-
ral network-based method is useful to describe the nonlinearity
properties of process data, an MQE chart also can deal with non-
linearity. Nevertheless, all of these nonlinear monitoring methods
were formulated based on an assumption that the process data is
time-invariant, which means the distribution, mean, and covari-
ance of the data do not change after the offline training procedure.

In reality, many industrial processes contain both nonlinear
and time-varying properties because of fluctuations in process raw
materials, slow shifts in the set points, aging of the main process
components, seasoning effects, and catalyst deactivation [5,15,19].
For these reasons, it is difficult to apply a traditional monitoring
approach to time-varying data [20]. The use of traditional SPC tech-
niques with time-varying data will degrade the performance of the
monitoring scheme. Therefore, several techniques have been pro-
posed to improve monitoring performance with these processes.
Wold [22] proposed use of exponentially weighted moving average
(EWMA) filters in conjunction with PCA and partial least squares
(PLS). Rigopoulos et al. [23] discussed the use of a similar mov-
ing window scheme. Rannar et al. [24] used a hierarchical PCA to
address adaptive batch monitoring, which is similar to EWMA and
PCA.Lietal.[25] developed two adaptive PCA algorithms. However,
all of these methods accumulate the data used, resulting in adapta-
tion speed degradation as the data size increases [15]. Wang et al.
[26] proposed a more computationally efficient moving-window
algorithm similar to recursive PCA. Its adaptation is achieved by
calculating the current correlation matrix from the previous one
instead of using the old process data. Liu [27] extended Wang'’s
method into the nonlinear field by using a moving-window kernel
PCA approach. The kernel PCA model is updated as the moving-
window slides along the data. Jeng [28] discussed combining both
recursive PCA and moving window PCA to exploit both methods.
More recently, Xie and Shi [15] used moving window-based update
logic with the GMM. Their approach could address the multimode
and time-varying problems and could approximate monitoring of
the nonnormal and nonlinearity problems. However, as noted ear-
lier, results from a GMM-based control chart may be unsatisfactory
when the observations described by each of the Gaussian compo-
nents do not follow a Gaussian distribution [16,17].

In the present paper, we propose an alternative nonparametric
control chart that can monitor both time-varying and nonlinear
processes. We call the proposed method a parameter-less self-
organizing map (PLSOM)-based control chart because it uses a
PLSOM algorithm[29] that addresses both the nonlinear and time-
varying problems.

The remainder of this paper is organized as follows. In Section
2, related works are introduced. Section 3 describes the proposed
PLSOM-based control chart for time-varying and nonlinear pro-
cesses. Section 4 presents a simulation study to examine the
performance of the proposed PLSOM-based control chart under
various scenarios. Section 5 presents a case study using a thin-film
transistor-liquid crystal display process. Section 6 consists of our
concluding remarks.

2. Related work
2.1. Self-organizing map
A SOM, introduced by Kohonen in 1982, is an unsupervised

learning method that consists of a set of neurons that gradually
adapt to input data by competitive learning. These neurons also

represent data points and describe the data similar to the way k-
means center points function [30]. It creates ordered neurons that
preserve the topology of the mapped data. The adaptation of neu-
rons is based on a similarity measure, which is usually Euclidean
distance. The SOM has been successfully applied in various engi-
neering applications, including pattern recognition, image analysis,
process monitoring and control, and fault diagnosis [31]. A brief
description of a SOM algorithm is as follows:

Step 1. At the start of a SOM algorithm, all weights w; of the
neurons are initialized with random values.

Step 2. An input vector X = {xl,xz, .. .,xp} is presented at
epoch (or iteration) t.

Step 3. The best matching unit (or winning neuron) is selected.
The best matching unit (BMU) is determined by minimizing the
Euclidean distance between the input vector X and the weight vec-
tors w;:

IX = Wyl = minj [ X —wjll,j =1,2,...,N, (1)

where wp,,,, is the BMU for input vector X, operator | || denotes the
Euclidean distance, and N is the number of neurons in the SOM.

Step 4. The weight of the neurons is updated using Eqs. (2) and
(3).

wi (t+1) = w;(t) + Aw;(t), (2)
Aw; (t) = d (t) he i (6)[x (£) — w; (1)], (3)

where w; (t + 1)is the weight of neuroniatiterationt+1,d(t)is the
learning rate, and h. ; (t) is the neighborhood function. The learning
rate d(t) and the neighborhood function h ;(t) are decreased in
accordance with the annealing scheme.

Step 5. If iteration t reaches a predefined number T, the pro-
cedure ends. Otherwise, steps 2-4 are repeated for the next input
vector.

2.2. MQE chart

A SOM has outstanding noise tolerance techniques that do not
require any assumptions on the statistical distribution of the moni-
tored processes. These features make a SOM an effective technique
for quality control [21]. The SOM-based monitoring method with
the moving window approach called an MQE chart was proposed
by Yu and Xi [21].

The monitoring statistic of an MQE chart is calculated by the
following equation:

MQE = | X — Wpmyll, (4)

where X is the input vector, and wy,,, is the weight vector of the
BMU.

The MQE statistic indicates the deviation of input vector X from
the weight vector of the BMU. If the MQE value exceeds a prede-
termined threshold, the process is considered as in an abnormal
state. An MQE chart is an effective tool to monitor nonlinear pro-
cesses. However, the performance of the monitoring model can be
degraded if normal changes occur, such as catalyst deactivation or
equipment aging [15].

2.3. Time-adaptive GMM chart for time-varying processes

The GMM describes a complex process with several Gaussian
components. Hence, the GMM model can be effective for non-
Gaussian, nonlinear, and multimode process monitoring [5]. To
address normal change problems, Xie et al. [15] proposed a time
adaptive monitoring scheme based on the GMM.
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