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In this paper, a nonlinear robust adaptive sliding mode control strategy is presented for the influenza
epidemics in the presence of model uncertainties. The nonlinear epidemiological model of influenza with
five state variables (the numbers of susceptible, exposed, infected, asymptomatic and recovered individ-
uals) and two control inputs (vaccination and antiviral treatment) is considered. The objective of the
proposed controller is decreasing the number of susceptible and infected humans to zero by tracking the
desired scenarios. As a result of this decreasing, the number of exposed and asymptomatic individuals is
also decreased and converged to the zero. Accordingly, it is shown that the number of recovered humans
is increased to its maximum steady state value. The stability and tracking convergence of the control sys-
tem are proved via the Lyapunov stability theorem. For the first time, a robust controller is designed and
investigated for the uncertain process of influenza treatment in a population. Through a comprehensive
evaluation, the effects of treatment period and the uncertainty amount on the performance of the con-
trolled system are studied. According to the results, the nonlinear sliding mode controller guarantees the
robust performance against a wide range of parametric uncertainties. Moreover, it is shown that much

less rates of vaccination and antiviral treatment are required as the treatment interval is increased.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

An outbreak of Pandemic Influenza A (H1IN1) was announced
by the World Health Organization (WHO) on April 24, 2009 and
its warning became more serious on June 11, 2009 [1,2]. Accord-
ingly, the WHO received 18449 fatal patients from April 2009 to
August 2010; which was reported from 214 countries all over the
world [3]. Different health programs have been executed in order to
prevent spread of Influenza. To implement various control strate-
gies and assess their advantages/disadvantages and also the cost of
implementation, predicting a reliable dynamic of epidemic is vital.

Dynamics of the epidemic are often described by mathematical
models. These models are useful in evaluation of the related theo-
ries. Also, they can be used in comparing, planning, implementing
and evaluating different detection, prevention, therapy and control
programs [4]. For this purpose, some mathematical models have
been developed for different diseases [5-10]. Colizza et al. [5] have
developed a global stochastic model for the world-wide spread of
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pandemic influenza by considering the complete database of Inter-
national Air Transport Association (IATA) [11]. Ferguson et al. [6]
have developed a simulation-based model to investigate the effects
of antiviral drugs and reducing contact rates for influenza disease
in Southeast Asia. Also, Longini et al. [7] developed a stochastic
model to evaluate the effectiveness of targeted antiviral prophy-
laxis and compared it with vaccination strategies. Similarly, the
effect of antiviral drug based on stochastic simulation has been
presented by Gani et al. [8].

In the field of deterministic models, Hethcote [4] have rec-
ommended the epidemiological models using a building block
approach. Brauer [12] has made a deterministic model by dividing
the population into susceptible, infected and removed compart-
ments. Brauer [13] has also suggested other compartments such
as asymptomatic, quarantined and isolated individuals. Arino et al.
[14] have presented a deterministic compartmental model with
five state variables for the influenza epidemic, and compared the
results of their model with the previous stochastic ones.

Optimal control method is one of the control strategies that
have been widely used for the different models of diseases. For
example, Felippe de Souza etal.[15] have proposed an optimal con-
trol method for an HIV infection dynamics. Their cost function has
been assigned such that the accumulated side effects of drugs and
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viral loads are minimized [15]. Also, Ledzewicz et al. [ 16] have pre-
sented an optimal control strategy for HIV infection and anti-viral
treatment of AIDS. In their optimality criterion [16], the number of
uninfected CD4*T cells is maximized; while, at the same time the
drug dosage is minimized. Blayneh et al. [17] have used the opti-
mal control theory for two deterministic models of malaria disease
(as avector-borne disease) and minimized the costs of contact pre-
vention and treatment. They also considered the number of latent
and infected groups in their cost function [17]. Recently, Lee et al.
[18] have augmented the previous deterministic model of influenza
epidemic [14] by adding three control inputs and implemented
an optimal control strategy on this model (containing five state
variables). They [18] used the vaccination, antiviral treatment and
social distancing as the control inputs and showed that an optimal
solution exists which minimizes the incidence and intervention
costs. Some other advanced strategies were suggested in [19-23]
for the optimization of the influenza vaccine allocation. Moreover,
there are some works on the optimal control of HIV, cancer and
tuberculosis diseases such as [24-27].

The epidemics of a disease depends on a lot of factors such
as seasonal effects, structure of population and delays in vaccine
production [18]. Thus, identifying the dynamics of epidemics may
be complicated and the corresponding mathematical models can-
not be easily obtained. In all of the above mentioned studies, the
dynamics of epidemics must be fully identified and known. How-
ever, similar to other dynamic systems, the dynamics of epidemics
are potentially accompanied with various sources of uncertainty
and inaccuracy. The extracted mathematical models of epidemics
may be vulnerable to the uncertainties in practice. Consequently,
these uncertainties should be taken into account in the control
of a disease epidemic. However, in the previous optimal control
methods (such as [18] for influenza epidemics), the mathematical
models of the process have been considered to be fully known and
exact. As a result, the previous studies on the optimal control of
different diseases may not lead to a desired performance in the
presence of uncertainties.

To deal with the above deficiencies and achieve the robust per-
formance in the presence of model uncertainties, robust and/or
adaptive control methods are usually employed. Moradi et al. [27]
have used an H,-robust controller for the drug delivery in the can-
cer chemotherapy process. Although this method had an acceptable
performance for the uncertain plants, its conceptual design was
rather complex. Moreover, in some previous optimal controllers
[15-17,24-26] and the robust one [27], nonlinear dynamic model
of the system should be linearized around some operating points.
Thus, the controller has desired performance only around the oper-
ating points. For this purpose, Ibeas et al. [28] have suggested a
robust controller for a specific SEIR epidemic model of diseases in
a population with four state variables and one control input (vac-
cination). Recently, Moradi et al. [29] and Babaie et al. [30] have
developed two adaptive control methods to adapt the drug dosage
and the tumor volume in cancer chemotherapy inside the human
body. However, the lack of a robust and/or adaptive control method
for the influenza epidemic (with considering its last mathematical
modeling) [18] is observed in the literature.

Accordingly, in this study and for the first time, a nonlinear
robust adaptive sliding mode control strategy is developed to con-
trol the influenza epidemic. The objective of this control strategy
is decreasing the number of individuals in susceptible and infected
compartments of a population dealing with the influenza, in the
presence of model uncertainties. For this purpose, two applicable
control inputs (the rates of vaccination and antiviral treatment) are
used for tracking the descending desired values for these compart-
ments’ population. The stability of the closed-loop control system
and tracking convergence of the objective compartments’ popula-
tions are proved using the Lyapunov stability theorem.

Unlike the previous linear controllers [15-17,24-27] that
require the linearization of the process around the operating points,
the proposed nonlinear sliding mode controller does not demand
the linearization. As a result, the performance of the proposed
controller is independent from the operating points or areas dur-
ing the process. Moreover, unlike the previous optimal controllers
[15-17,24-26] presented for different diseases, inclusion of the
uncertainties in the nonlinear dynamics of the influenza epidemi-
ological model are also considered in the structure of the proposed
robust controller. The adaptation laws for updating the robust gains
of the controller are defined to provide stability in the presence of
dynamic uncertainties with unknown bounds.

2. Nonlinear epidemiological model of influenza

In this work, the nonlinear epidemiological model of influenza is
adopted from [18]. This SEIAR model [18] is extracted from an ini-
tial SEIR model with five state variables (compartments) that have
been proposed in [14]. Lee et al. [18] have augmented the previ-
ous influenza epidemic model [14] by adding three control inputs
that are the vaccination, antiviral treatment and social distancing.
In order to make the control inputs more practical and applicable
in areal population, the third input (social distancing) is eliminated
in this paper. In other words, it is hard to control the quarantine of
the people or prevent them from their necessary travels as much
as needed. Therefore, the nonlinear SEIAR epidemiological model
of influenza with two control inputs (the rates of vaccination and
antiviral treatment) and five variables (compartments) is described
as:

S=—BSA—ut)s (2.1)
E=pBSA —«kE (2.2)
I =pkE —al — T(t)I (2.3)
A=(1-p}E—-nA (2.4)
R = fol + () + nA + 1(t)S (2.5)

where A =¢E+(1—q)I+5A. Therefore, this system has five state
variables S, E, I, A and R with positive values and initial conditions
S(0)=So, E(0)=Ep, I(0)=1Iy, A(0)=Ag and R(0)=Ry. These positive
state variables S, E, I, A and R are the Susceptible, Exposed, (symp-
tomatic) Infected, Asymptomatic and Recovered compartments,
respectively. In this SEIAR epidemiological model, S denotes the
number of individuals that are susceptible and not yet infected with
influenza, E represents the number of people exposed to influenza
(infected but not yet infectious), I denotes the population of infected
humans having infectious influenza symptoms, A represents the
number of influenza carriers without any noticeable symptoms,
and R is the number of recovered people from influenza. Accord-
ing to Egs. (2.1)-(2.5), following statements can be mentioned: The
exposed individuals (E) are infected with a rate of x and they are
divided into two groups: infected (I) and asymptomatic (A). The
fraction p of infected humans will go to infected compartment
and others (the fraction 1—p of infected humans) will proceed
to asymptomatic group. The asymptomatic individuals (A) will go
to recovered compartment (R) by the rate of 5. Also, the infected
humans leave their compartment at the rate of «, and a fraction f
of these leaving persons will be recovered. Note that all parame-
ters of the presented epidemiological model (2.1)-(2.5) including
B, k, p, @, n and f are positive constants. More details about this
dynamic model are addressed in [18,14]. A conceptual flow dia-
gram for visualization of the SEIAR influenza dynamics (2.1)-(2.5)
is shown in Fig. 1.

In the above equations, 0 < v(t) < 1 and 0 < 7(t) <1 are two nor-
malized control inputs of the system used to achieve the desired
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