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a  b  s  t  r  a  c  t

Key  polymer  properties  are substantially  directly  related  to  the  polymer  molecular  weight  distribution
(MWD).  On-line  monitoring  and  prediction  of  dynamic  MWD  profiles  are  highly  important  for on-line
quality  control  of polymerization  processes.  In  this  study,  a  fast and  reliable  computational  strategy  for
an equation-oriented  model-based  soft  sensor  for the high-density  polyethylene  grade  transition  process
is  developed.  The  simultaneous  collocation  approach  is  adopted  to discretize  the  dynamic  model.  A novel
moving  finite  element  method  is proposed  to improve  the  on-line  performance  of  the  derived  large-scale
nonlinear  equation  systems.  The  sensitivity  information  of the  nonlinear  equation  systems  contributes  to
a convergence  enhancement  strategy  for  the  sensor.  The  prediction  accuracy  and  computational  efficiency
are demonstrated  using  industrial  data.  A  potential  application  to  extend  the  polymerization  process  with
changeable  flowsheet  is  also tested  through  simulation.

© 2017  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Continuous slurry polymerization with heterogeneous Ziegler–Natta catalysts is a common process in high-density polyethylene (HDPE)
production, in which polymers grow at the active sites of the catalyst. How the monomer molecules are connected in the polymer chain
determines the molecular architecture of the resulting polyolefins as well as their various properties and applications. The molecular
weight distribution (MWD)  is a key microstructure index because it significantly affects the mechanical and rheological properties of
the polymer [1]. Once the MWD  is determined, several other quality indices, such as the polydispersity index (PDI) and weight average
molecular weight (Mw), can also be determined. Thus, considering MWD  in polymer quality prediction and control is necessary. To achieve
different end-use polymer specifications, a plant generally produces products with various grades through the same equipment. To save
material and energy, grade transition requires continuous changes from one steady state to another as fast as possible [2]. Given that grade
transition is highly nonlinear and time-variant, it requires continuous monitoring by experienced operators. The operating conditions, such
as temperature, pressure, and feed flowrates, are measured on-line. Meanwhile, product quality should be promptly determined to reduce
unnecessary waste. However, performing on-line measurement of the polymer quality, particularly for MWD  determination, is difficult.
The conventional high-temperature gel permeation chromatography (GPC) method requires highly accurate sensors and long experiment
durations. GPC measurement is often performed in the steady state after grade transition is completed and is seldom performed during
the transition. During this delay, polymers are regarded as off-grade materials and are unnecessarily wasted. Thus, an early and accurate
assessment of polymer quality is highly important [3].

Soft sensors are widely used to estimate process variables that are difficult to measure on-line in chemical processes. Research efforts
have been made to develop data-driven soft sensors for polymerization processes. Numerous data-driven modeling methods [4], such as
principal component regression (PCR) [5], artificial neural network (ANN) [6,7], partial least squares (PLS) [3,8,9], support vector machine
(SVM) [3,10], and the Bayesian method [10,11], have been adopted for soft sensors. However, constructing data-driven models with high
prediction performance for grade transition processes is difficult. To address the time-variant and highly nonlinear relationship between
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Nomenclature

x* Exact solution of soft sensing problems
x̂ First-order estimate of x*
J∗ Jacobian of soft sensing problem P at x*

Greek letters
�  Vector of initial state of differential variables
ˇ* Regression constant vector
�* Correlation parameter vector
� Flory distribution parameter
� Tolerance of disturbance mode
� Vector of operating conditions
� Vector of training samples
� Parameter of Gaussian correlation function

Latin scripts
P (k, k − 1) Soft sensing problem with parameter �k and �k−1
S Solution set of problem P
x̂ ASP for problem P

the polymer quality and process variables, effort has been made in developing dynamic models. Gonzaga et al. [6] utilized an ANN-based
soft sensor to provide estimates of the polymer viscosity. Tsen et al. [7] employed hybrid ANN models to predict the PDI of polyvinyl acetate
in batch reactors. Facco et al. [9] developed a multi-phase PLS model to predict the polymer viscosity in batch reactors and indicated that
the estimate accuracy can be substantially improved if some forms of dynamic information are included in the models. Shang et al. [10]
developed a dynamic model based on SVM within a Bayesian framework to predict the MI  of polypropylene. Kaneko and Funatsu [12]
constructed time difference models to estimate the melt index (MI) of the polymer. Kim et al. [13] developed a clustering-based hybrid
model to monitor the MI  of polypropylene during grade transition operations. Ohshima and Tanigaki [14] applied the extended Kalman
filter technique in the on-line sensing of the polymer MI.  Among the reviewed data-driven methods for polymer grade transition processes,
none of them used MWD  as a polymer quality index. Unlike other quality indices, such as MI  [3,10,13,14], viscosity [6,9], and PDI [7], MWD
has a large-scale feature. The typical maximum chain length to represent the MWD  profile can be as large as 105, or sometimes even
larger. Meanwhile, GPC data during grade transition are very scarce because of measurement limits in the industrial field. Thus, developing
data-driven models is very difficult for the high-dimensional output and data scarcity in this case. As an alternative, the first-principle
model can play an important role with good accuracy over a broad range of operating conditions. The challenge in first-principle models is
that their development requires considerable expertise and process knowledge. Besides, the model solution is difficult and costly due to
the complexity of polymerization and MWD.  Several comprehensive models have been developed to describe the mechanics of ethylene
polymerization processes [15,16]. MWD  modeling has also been considered in recent years [17]. The prediction accuracy can be improved
by correcting the model parameters through off-line measurement. However, to the best of our knowledge, MWD  monitoring using
first-principles models has not been reported. Furthermore, solving large-scale models in real-time is problematic.

The computational time required for first-principles models can span from minutes to hours depending on the model complexity.
However, model-based soft sensors require fast and reliable implementation, which can be improved through efficient modeling and
solving strategies. The equation-oriented (EO) approach is one of the most competitive strategies in process simulation. The process model
is often stiff and large, and solving EO models is difficult. Hashemian and Armaou [18] employed the Carleman linearization technique to
obtain fast dynamic systems. Touretzky and Baldea [19] derived non-stiff reduced-order models from multiple time-scale processes for
real-time computation. Zavala et al. [20] developed real-time iterative strategies for a simultaneous solving approach based on nonlinear
programming sensitivity. These strategies have potential in modeling and solving for the on-line computation of dynamic models.

This study addresses fast and reliable computational strategies for the on-line monitoring of dynamic MWD  based on first-principles
models. A complete EO model is developed for an industrial HDPE slurry process. Fast surrogate models for thermodynamics and efficient
modeling for dynamic MWD  calculation reduce the scale of the process model. A novel moving finite element method is proposed to
improve the on-line performance. The sensitivity information of nonlinear equation systems contributes to a convergence enhancement
strategy for the sensor. This integrated framework is implemented on plant data to demonstrate the prediction accuracy and computational
efficiency. A potential application to extend the polymerization process with a changeable flowsheet is also tested through simulation.

2. Dynamic model development

Fig. 1 illustrates the flowsheet of an industrial HDPE slurry process with two  continuous stirred tank reactors (CSTRs) in series. The
five-site Ziegler–Natta catalyst system and the other feed streams, including ethylene, hydrogen, and n-hexane, are fed continuously into
the CSTRs. The product of the first reactor is fed into the second reactor. The vapor streams leaving the reactors are recycled to the feed
streams through coolers, flash drums and compressors to achieve high monomer conversion. The final product that leaves the second
reactor is dried and pelletized.

Intuitively, the dynamics of the process and MWD  depend on the operating conditions of the process units (such as temperature,
pressure, liquid level and feed flowrates). A predictive model relating the operating conditions that can be measured on-line to the process
dynamics and MWD  is developed. The process units (i.e., reactors, flash drums, coolers, and compressors) are modeled with equations
that describe the thermodynamics, polymerization kinetics, and mass and energy balances. Unlike data-driven models, this first-principle
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