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a  b  s  t  r  a  c  t

This  paper  presents  a novel  sparse  principal  component  analysis  method,  which  is  named  the compres-
sive  sparse  principal  component  analysis  (CSPCA).  CSPCA  ensures  that  the  effects  of  principal  components
(PCs)  with  small  scores  (eigenvalues/variances)  on monitoring  performance  are  taken  into  account  during
deriving  the  first  PCs,  and  measurements  are  adaptively  compressed  and  partially  reconstructed  without
prior  knowledge  of data  sparsity.  The  proposed  method  employs  the  strategy  of  screening,  reconstruct-
ing,  and  detecting  for  process  supervisory  monitoring.  Data-screening  algorithm  is  employed  to  sift  out
data with  essential  characteristics  of abnormal  situations  at the  screening  stage.  Data  selected  are adap-
tively  compressed,  and  abnormal  features  are  highlighted  by the  partial  reconstruction  algorithm  at  the
reconstructing  stage.  A  new  SPCA  is  developed  by  introducing  L2,1-norm  to replace  the  usual  norm  in the
traditional  SPCA,  and  is  employed  to analyse  data  reconstructed  at the  detecting  stage.  The  effectiveness
of  the  compressive  sparse  principal  component  analysis  is evaluated  on the  Pitprops  data  set  and  the
Tennessee-Eastman  process  with  promising  results.

© 2016  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Multivariate statistical process monitoring (MSPM) methods
have attracted increasing attentions. Among these methods, prin-
cipal component analysis (PCA) is one of the most fundamental
methods, which can reduce dimensionality, extract characteris-
tics, and derive principal components (PCs) with large scores for
guaranteeing minimal information loss. However, PCA in the pro-
cess monitoring has two main limitations: (i) Each PC is a linear
combination of almost all original variables, and the loadings of
PCs are typically nonzero. Consequently, it is difficult to interpret
the physical meanings of PCs and to identify essential variables,
especially in the high-dimensional situation. (ii) Only principal
components with large scores are retained, and PCs with small
scores are rejected during seeking PCs. As a result, some essen-
tial information, which is contained in principal components with
small scores, is ignored so as to impact the algorithm performance,
which is demonstrated by Jolliffe in 1982.

In the multivariate statistical analysis field, many methods were
proposed to address the first limitation of PCA by incorporat-
ing special norms into PCA. Jolliffe and Uddn proposed ScoTLASS
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to maximize the explained variance on orthogonal loadings for
obtaining sparse PCs by introducing LASSO constraint into clas-
sic PCA [1]. Zou et al. presented a regression-type sparse PCA
(SPCA) to obtain sparse PCs using the lasso/elastic net regulariza-
tion [2]. Compared to ScoTLASS, SPCA is a computationally efficient
method, although complicated objective function. However, The
PCs obtained by SPCA is sensitive to the selection of the number of
PCs. Witten et al. established a connection between ScoTLASS and
SPCA, and developed an efficient method to obtain the first PCs of
ScoTLASS [3]. Shen and Huang proposed a sparse PCA via regular-
ized SVD (sPCA-rSVD) to extract PCs through solving the low rank
matrix approximation problem [4]. The elements in loading vectors
with absolute values smaller than a threshold are artificially set to
zero by a threshold method, which is potentially misleading in var-
ious respects, as pointed out by Cadima and Jolliffe [5]. Xie et al.
proposed a shrinking PCA by introducing the regularization penalty
into the original objective function of classic PCA [6]. Qi  et al.
introduced a ‘mixed-norm’ to replace the norm of the traditional
eigenvalue problem, and extracted uncorrelated PCs (orthogonal
loadings) by an iterative algorithm [7]. Most of the methods men-
tioned above pay more attention to the model space and seek the
variables with dominant variances in a data set, which is often suit-
able for biological or social science data. However, it is unsuitable
for monitoring complex industrial process because changes affect-
ing measurements (violating the PCA model) are detected in the
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residual space, and a violation of SPE statistic indicates abnormal
operating conditions.

The second limitation of PCA relates to selecting the principal
components for impacting the detection sensitivity of PCA-based
methods in process monitoring fields. The same limitation exists for
most of the spare PCA methods because current spare PCA methods
follow a rule based upon the score of the component, i.e. retain
components with large scores and reject those with small scores.
However, Hotelling [8] and Massy [9] said the last (i.e. smallest
scores) component can be significant, and Jolliffe is unequivocal in
pointing out a misconception that PCs with small scores are useless
[10]. Jolliffe further demonstrates that the components with small
scores can be as important as those with large scores, and rejected
PCs result in the loss of useful information, which can impact the
algorithm performance. Therefore, the selection of sparse principal
components is still one of the essential problems in the sparse PCA-
based process monitoring field.

On the other hand, statistical process monitoring, in essence, is
a process during which the essential features of data are discrim-
inated for evaluating the system performance. It is implied that
one just needs to analyse the essential features extracted instead
of the raw data for the process monitoring. It is noted that most
signals may  be expressed using a linear combination of sparse vec-
tors in the transform basis, such as in the wavelet basis. Thus, a
sparse signal can be compressed to reduce volumes of data, and
then reconstruct a signal from a very limited amount of data, which
consists of essential characteristics of the original signal. It is known
as the compressive sensing (CS), which builds on the works of
Donoho [11] and Candès et al. [12]. According to CS theory, a signal
having a sparse-representation in one basis may  be reconstructed
from a limit amount of measurements in the second basis that is
inconsistent with the first one. What is more, the probability of
reconstruction failure is zero provided that the sampling size is
sufficiently large [12]. Candès and Wakin point out that ‘CS mea-
surement protocols essentially translate analog data into an already
compressed digital form so that one can at least in principle obtain
super-resolved signals from just a few sensors’ [13]. If process vari-
ables monitored can be referred to as ‘sensors’, then it is natural
that CS theory can be extended to the statistical process monitor-
ing field. To the best of our knowledge, however, there are few
studies focusing on how to apply compressive sensing principles
to the process monitoring. One of the important problems is how
data with essential features of abnormal situations are extracted
and reconstructed without prior knowledge of data sparsity in the
process monitoring in the noise situations.

To address the above issues, we propose the compressive sparse
principal component analysis (CSPCA) method with the following
advantages: i) CSPCA takes into account the effects of PCs with
small scores. ii) CSPCA establishes a connection between the reso-
lution problem of sparse PCs and the selection problem of PCs, and
both problems are solved in the unified framework. iii) CSPCA can
adaptively reconstruct abnormal data without prior information of
the sparsity. iv) CSPCA is a convex optimization problem. CSPCA
is employed to monitor process and detect faults. CSPCA consists
of the data-screening algorithm, the adaptive reconstruction algo-
rithm and the sensitive sparse PCA at the corresponding stages,
respectively. Data-screening algorithm is applied for selecting
abnormal data from just-in-time measurements at the screening
stage. The adaptive reconstruction algorithm is proposed to com-
press and reconstruct data selected at the reconstructing stage.
Sensitive sparse PCA is developed by introducing L2,1-norm to
replace L2-norm of the classic sparse PCA so that the nonconvex
resolution problem of PCs is transformed into the convex resolu-
tion problem, and the limitations mentioned above are solved at the
same time. Subsequently, sensitive sparse PCA algorithm is applied
to analysing data reconstructed and detecting abnormal situations

at the detecting stage. As illustration, CSPCA is applied to Pitprops
data set and Tennessee-Eastman process (TEP).

The rest of this article is organized as follows: Section 2 simply
summarizes the compressive sensing principles and various sparse
PCA. Section 3 proposes the details of CSPCA method. CSPCA is
applied to Pitprops data set and Tennessee-Eastman process (TEP)
in Section 4. Finally, conclusions are presented in the last section.

2. Preliminaries

2.1. Compressive sensing

The sparsity and the incoherence are two fundamental prin-
ciples in the compressive sensing theory, which can ensure that
signals can be reconstructed from far few samplings by compres-
sive sensing methods than by traditional methods [13]. Consider a
discrete signal x = [x1, · · ·,  xN] ∈ RN is expanded in an orthonormal
basis matrix �i =

[
 1, · · ·,   N

]
∈ RN×N as follows:

x =
N∑
i

˛i i (1)

where ˛i is weighting coefficient sequence of x, and ˛i = 〈x,  i〉.
Clearly, ˛i is an equivalent representation of measurements x. The
signal x is called as K-sparse if only K (K � N)  entries of  ̨ are
nonzero, i.e. the signal x is linear combinations of K base vectors
from basis � . It implies the essential information of x exists in the
K-dimension data instead of the N-dimension data. Moreover, x
is projected into a low dimensional space for obtaining M non-
adaptive, linear observations y = �x  by observation matrix � ∈
RM×N . If � satisfies the restricted isometry property (RIP) [13] or the
null space property (NSP) [14], the information of x embedded in y
can be recovered with high probability by the reconstruction algo-
rithm. Current reconstruction algorithms mainly include convex
optimization based algorithm [15,16], greedy algorithm [17,18],
and combinational algorithm [19,20]. Among these algorithms,
sparsity adaptive matching pursuit (SAMP) [20] is an improved
greedy algorithm, which is able to reconstruct the original sig-
nal without prior knowledge of the sparsity. The adaptive partial
reconstruction algorithm is proposed based on SAMP in this paper.

2.2. Sparse PCA

We  summarized several popular SPCA as follows:

• ScoTALASS [1]: for K-sparse PCs, the coefficient vector is the solu-
tion of the following optimization problem,

max
u ∈ Rp

uT˙u

s.t.‖u‖2 = 1
,  ‖u‖1 ≤ t, u ⊥ uj, 1 ≤ j ≤ k − 1 (2)

where uj is the coefficient vector of the jth sparse PCs and t is the
tune factor.

• SPCA [2]: solve the regression-type optimization problem as fol-
lows:

min
A,B

⎧⎨
⎩

n∑
i=1

‖xi − A�Txi‖
2
2 + �

k∑
j=1

‖ˇj‖2
2 +

k∑
j=1

�1,j‖ˇj‖1

⎫⎬
⎭

s.t. ATA = I

(3)

where A ∈ RN×k, xi, i = 1, · · ·,  n is sampling data. � =
(
ˇ1, · · ·,  ˇk

)
with ˇi ∈ Rp, i = 1, · · ·,  k, I is the identity matrix. If A∗ and B∗ are
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