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ABSTRACT

Direct optimal control algorithms first discretize the continuous-time optimal control problem and then
solve the resulting finite dimensional optimization problem. If Newton type optimization algorithms are
used for solving the discretized problem, accurate first as well as second order sensitivity information
needs to be computed. This article develops a novel approach for computing Hessian matrices which is
tailored for optimal control. Algorithmic differentiation based schemes are proposed for both discrete-
and continuous-time sensitivity propagation, including explicit as well as implicit systems of equations.
The presented method exploits the symmetry of Hessian matrices, which typically results in a compu-
tational speedup of about factor 2 over standard differentiation techniques. These symmetric sensitivity
equations additionally allow for a three-sweep propagation technique that can significantly reduce the
memory requirements, by avoiding the need to store a trajectory of forward sensitivities. The performance
of this symmetric sensitivity propagation is demonstrated for the benchmark case study of the economic
optimal control of a nonlinear biochemical reactor, based on the open-source software implementation

in the ACADO Toolkit.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Optimal control problems (OCP) arise in various applications,
including the optimization of an actuation profile, system state and
parameter estimation or optimal experiment design problems [1].
Shooting based direct optimal control methods rely on an accurate
discretization of the original continuous-time OCP, resulting in a
finite dimensional nonlinear program (NLP) [2,3]. In the context
of nonlinear model predictive control (NMPC) or moving horizon
estimation (MHE) [4], for example, these optimal control problems
have to be solved under strict timing constraints [5]. In many
practical control applications, the simulation of the nonlinear
dynamics as well as the propagation of first and second order
derivative information is the main bottleneck in terms of compu-
tation time. In particular, Newton type optimization algorithms
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[6] such as interior point (IP) methods [7] or sequential quadratic
programming (SQP) [8] for optimal control require the reliable and
efficient evaluation of such derivatives [9]. This is especially crucial
in the context of economic objectives, where Gauss-Newton
or other Hessian approximation strategies may fail to perform
well [10].

Existing direct optimal control algorithms based on shoot-
ing methods either employ a discretize-then-differentiate [2] or a
differentiate-then-discretize type of approach. The first technique
carries out the differentiation after discretization, e.g., following
the technique of internal numerical differentiation (IND) [2] in
combination with algorithmic differentiation (AD) [9] to evalu-
ate these derivatives. Other discrete-time sensitivity propagation
schemes are tailored for implicit integration methods [11,12]. The
differentiate-then-discretize approach involves an extension of the
dynamic equations with their corresponding sensitivity equations,
as implemented for example for first order sensitivities in SUNDI-
ALS [13]. This can be performed for both forward [ 14,15] and adjoint
sensitivity analysis [16,17]. Note that direct transcription methods
[18] do not require such a propagation of sensitivities as in shoot-
ing based approaches, but they can still benefit from the proposed
symmetric evaluation of the Hessian contributions.

Unlike classical forward-over-adjoint (FOA) techniques [9,19]
to compute second order derivative information, the symmetric
property when evaluating a Hessian matrix can be exploited as
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discussed in [9,20] for explicit function evaluations. Following this
research, a symmetric variant of AD was presented in [10] for
explicit integration schemes in the context of exact Hessian based
direct optimal control. Later in [21], this symmetric scheme has
been extended to the case of an implicit integration method using
the implicit function theorem in a discrete-time propagation tech-
nique. Similar to [10,21], the present article is concerned with
the computation of Hessian matrices as required by Newton type
optimization. The work by [22] instead proposes a differentiate-
then-discretize type approach to compute Hessian vector products
directly in the context of truncated Newton (TN) methods. In case of
path-constrained optimal control problems, one could additionally
use composite adjoints as discussed in [23].

1.1. Motivation and contributions

This paper proposes an efficient first and second order algorith-
mic differentiation scheme for both discrete- and continuous-time
optimal control problems. Unlike the initial results from [10,21],
this article presents and establishes the correctness of the sym-
metric Hessian propagation technique for any explicit or implicit
integration method. The resulting second order sensitivity analy-
sis typically allows for a computational speedup of about factor 2,
by exploiting the symmetry of the Hessian. In addition, we present
an extension of these results to continuous-time sensitivity prop-
agation for an implicit system of differential algebraic equations
(DAE) of index 1. This discussion in a continuous-time framework
allows for a generic sensitivity analysis, before applying a numerical
discretization scheme.

Based on the symmetric sensitivity equations, a resulting three-
sweep Hessian propagation (TSP) scheme has been proposed [10].
This technique is studied here both in discrete- and continuous-
time, and shown to considerably reduce the memory requirements,
in addition to the reduced computational burden, over classical
forward-over-adjoint (FOA) approaches. The proposed TSP scheme
avoids the need to store a trajectory of forward sensitivities based
on the symmetric sensitivity equations, which generally results in a
much smaller memory footprint to compute the Hessian. An imple-
mentation of these symmetric Hessian propagation techniques in
the open-source ACADO Toolkit software is presented and its per-
formance is illustrated on the numerical case study of a nonlinear
biochemical reactor.

1.2. Notation and preliminaries

This paper denotes first order total and partial derivatives,

respectively using the compact notation DyF(a, b) = % and

dqF(a, b) = W In addition, let us write the second order direc-
tional derivatives:

d*Fy(a, b)

n
(c, Dﬁ’bF(a, b)) = ZC"W’ (1

k=1

where ¢ € R" is a constant vector and F : Rl x R™ — R" a twice
differentiable function. Notice that the map (-, -) : R" x R™xxm _,
R>M does not denote a standard scalar product, since the first
argument is a vector while the second argument is a tensor. We
occasionally use the shorthand notation (c, Dz!bF), ifitis clear from
the context that F depends on a and b. We write (c, DgF(a)) rather
than (c, DgyaF(a)), in case F has only one argument. If the second

order derivatives of F are continuous, the matrix (c, DﬁF(a)) is sym-
metric. When using partial instead of total derivatives, a similar

compact notation for the directional second order derivatives is
adopted:
n

2 &’ Fi(a, b)
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The article is organized as follows. Section 2 introduces direct
optimal control in a simplified setting in order to illustrate the need
for efficient sensitivity analysis. Section 3 discusses discrete-time
propagation techniques for a generic implicit integration method.
We first present the classical firstand second order techniques, then
we propose and motivate our alternative symmetric propagation
scheme. Section 4 then presents the continuous-time extension
of these sensitivity equations, considering an implicit DAE sys-
tem of index 1. A three-sweep Hessian propagation technique is
introduced and discussed in Section 5, including implementation
details. The open-source ACADO code generation software using
these novel sensitivity propagation techniques is briefly discussed
in Section 6. Numerical results for an illustrative case study are
finally presented and discussed further in Section 7.

2. Problem statement

Let us briefly introduce the problem formulation in which we are
interested, including the system of differential algebraic equations
(DAE). We then introduce the framework of direct optimal control
and Newton type algorithms to solve the resulting optimization
problem, using first and second order sensitivity analysis.

2.1. Differential algebraic equations

Let us consider the following semi-explicit DAE system:

X(t) = f(x(t), (1)),  x(0)=xo(p), 0= g(x(t), z(t)), (3)

in which x(t) € R™ denotes the differential states, z(t) € R" the
algebraic variables and f : R™ x R™ — R™, g:R™ x R — R"z,
The parameters p € R™ are additional variables which define the
initial value function xg : R™ — R™. The latter DAE system is of
index 1 [17] if the Jacobian 9,g(-) is non-singular. In case there are
no algebraic variables, the system instead denotes a set of ordinary
differential equations (ODE):

x(t) = fope(x(t)), x(0) = xo(p). (4)
We introduce the following two important assumptions.

Assumption 1. The functions f{x(t), z(t)), g(x(t), z(t)) and xo(p) are
twice continuously differentiable in all arguments.

Assumption 2. The semi-explicit DAE system in Eq. (3) has dif-
ferential index O or index 1, which means that either n; =0, or the
Jacobian matrix d,g(-) must be invertible.

Finally, let us refer to the following definition for consistent ini-
tial conditions such that the initial value problem in Eq. (3) has a
unique solution x(t, p) and z(t, p) Vt € [0, T], p given the previous
two assumptions [14,24].

Definition 3. The initial values (x(0, p), z(0, p)) are called consis-
tent when the following conditions hold:

x(0, p) = xo(p)
0 = g(x(0, p), z(0, p)).

This is a well defined nonlinear system in (x(0, p), z(0, p)) given the
parameter values p and an index 1 DAE.

(3)
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