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a  b  s  t  r  a  c  t

This paper  presents  an integral  technique  for designing  an  inferential  quality  control  applicable  to  multi-
variate  processes.  The  technique  includes  a self-validating  soft-sensor  and  a multivariate  quality  control
index  that  depends  on  the specifications.  Based  on  a partial  least  squares  (PLS)  decomposition  of  the
online  process  measurements,  a fault  detection  and  diagnosis  technique  is  used  to  develop  an  improved
self-validation  strategy  that is  able  to confirm,  correct  or reject  the  soft-sensor  predictions.  Model  extrap-
olations,  disturbances  or sensor  faults  are first detected  through  a combined  statistic  (that  considers  the
calibration  region);  then,  a diagnosis  is  made  by  combining  statistics  pattern  recognition,  contribution
analysis,  and  disturbance  isolation  based  on  historical  fault  patterns.  An off-spec  alarm  is  produced  when
the  proposed  index detects  that  an  operating  point  lies  outside  the  integral  design  space  driven  by  the
specifications.  The  effectiveness  of  the  proposed  technique  is  evaluated  by means  of two  numerical  exam-
ples. First,  a  synthetic  example  is  used  to interpret  the  fundamentals  of the method.  Then,  the  technique
is  applied  to the industrial  Styrene-Butadiene  rubber  process,  which  is  emulated  through  an  available
numerical  simulator.

© 2016  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

In most industrial processes, the automatic control systems
(or even the operators) adjust the manipulated variables with the
aim of fulfilling several goals, e.g. to maintain the product quality
within specifications, to limit the waste or contaminating emis-
sions according to government regulations, and to keep the process
close to an optimal operation condition that is normally established
from both economical and technical point of views. An adequate
driving of the manipulated variables is clearly conditioned to the
availability of accurate and fast measurements. Typically, the pro-
cess measurements are available from either online analyzers or
offline laboratory equipments. Unfortunately, many important pro-
cess variables cannot accurately be measured in relatively short
times, thus negatively affecting real-time control strategies. In
such cases, soft-sensors can help to overcome the problem. A soft-
sensor is a mathematical code able to infer some unmeasured
variables from a set of online measured variables. In the last years,
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soft-sensor applications have brought significant attention in the
process industry [1–5]. In particular, several techniques based on
partial least squares (PLS) have been used for monitoring complex
industrial processes where the quality variables are important [6,7].

The efficiency of a soft-sensor as a predictive tool depends on
several factors, such as: i) the accuracy of the process model that
was used to derive the soft-sensor; ii) the proper adjustment of
the soft-sensor to the actual process operating point; and iii) the
availability of adequate online measurements. In general, process
disturbances and sensor faults can strongly modify the correlated
measurements, and therefore the quality predictions become unre-
liable. To overcome these difficulties, several strategies have been
reported in the literature [8,9]. For example, Liu et al. [8] proposed
a PLS-based soft-sensor with self-validation and reconstruction of
faulty readings that improve the reliability of the predictions. The
strategy consisted in an initial validation of the measurements prior
to predicting the quality variables through the soft-sensor. The
detection of a faulty sensor was  followed by a reconstruction of
the corresponding faulty readings; however, the identification of
the faulty sensors was not fully reliable [8,10].

A fault detection and diagnosis strategy applicable to multivari-
ate processes typically includes three main tasks: 1) the detection
of an anomaly or an out-of-control condition; 2) the classification
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of the fault that generated the abnormal behavior, and 3) the isola-
tion of the disturbed variables and ideally of the disturbing sources.
Godoy et al. [11] proposed a PLS-based fault detection and diag-
nosis technique for multivariate processes that assumes available
online measurements of the quality variables. According to such
approach, the projections of the process measurements onto the
latent space induce a PLS-decomposition of such measurements
into four non-overlapped subspaces, and then, a combined index
can be used to detect the process anomalies. The technique allows
for an efficient anomaly classification as well as the identification of
the disturbed variables. The pattern of the statistics that compose
the detection index can be used to classify the anomaly type. How-
ever, no specification-dependent control limits were included for
those statistics, as it is normally required for establishing quality
control strategies.

Contribution plots are tools typically used for the identification
of sources of faults without requiring any prior fault information
[7,10]. On the basis of a principal component analysis (PCA) model,
Alcala and Qin [12] have proposed a reconstruction-based contri-
bution (RBC) technique to diagnose process faults. This technique
inherits the merit of traditional contribution plots and has a solid
theoretical foundation for detecting faulty sensors without smear-
ing problems. However, RBC is only useful to isolate those failed
sensors that do not cause the fault propagation to other variables,
while it is ineffective for complex faults such as process faults and
disturbances [10]. On the other hand, the angle between the vec-
tors corresponding to the measurements and the fault signatures
has been used to isolate complex faults [2,13]. Generalized RBCs
based on fault subspaces have also been used to isolate know pro-
cess faults [14], but need several faulty samples for extracting each
fault subspace. In contrast, the angular measures have the advan-
tage of only requiring a single faulty sample of each know fault to
implement the diagnosis stage. It has been proven that the diag-
nosis results are the same for both approaches, because the ratio
“generalized RBCs/detection index” is equal to the angular mea-
sure given by the squared cosine of the angle between the current
PCA-projection and the faulty PCA-projection [10].

The role of design spaces (or multivariate specification regions)
is undoubtedly important in several processes, and aims at reduc-
ing statistical variations in the final product quality by design rather
than by inspection. The International Conference on Harmoniza-
tion Q8 (ICH-Q8) document [15] defines a design space as “the
multidimensional combination and interaction of input variables
(e.g., material attributes) and process parameters that have been
demonstrated to provide assurance of quality.” The current trend
is towards defining multivariate specifications in the low dimen-
sional subspace defined by a PLS model [16,17]. An integral design
space should include a quality driven specification for the raw
materials to be used in the process under certain operating con-
ditions. Such specification will have to account for the inherent
variability in the process and the combined effect of incoming
materials with process conditions onto product quality [18].

Control of industrial polymerization processes is difficult due
to the lack of sensor devices capable of providing with accurate
online measurement of most quality variables [19]. Currently, there
are several applications of soft-sensors in polymerization processes
(e.g., Gonzaga et al. [20]). In particular, Godoy et al. [21] have
developed a PLS soft-sensor capable of monitoring the produc-
tion of Styrene-Butadiene rubber (SBR) in an industrial train of
7 continuously-stirred tank reactors. However, the presence of
disturbances or sensor faults can turn unreliable the soft-sensor
predictions.

In this work, an integral technique for inferential quality con-
trol is presented. To this effect, a PLS model is used to define an
integral design space driven by quality specifications that accounts
for the relationships between incoming materials, process condi-

Fig 1. Inferential quality control with a self-validating soft-sensor. The soft-sensor
predictions (ŷ) are confirmed, corrected, or rejected by the proposed validation
strategy.

tions and product quality. Based on this integral design space, a
statistical index is proposed for quality control. Additionally, this
work presents a self-validation strategy for the inferences provided
by a soft-sensor that estimates quality variables in a multivariate
process (see Fig. 1). Such strategy is based on a fault detection and
diagnosis method previously designed for processes with online
measurable outputs [11], and includes: i) an extrapolation control
limit, ii) pattern analysis of the statistics that compose a fault detec-
tion index, iii) RBC analysis for the identification of the contributing
variables or faulty sensors, and iv) a disturbance isolation method
based on the angle differences between current measurements and
the historical disturbances. The proposed self-validation strategy
contributes to improve the soft-sensor inferences by adding a pro-
cedure able to alarm the presence of extrapolations, disturbances
or sensor faults, and to eventually correct faulty readings. The effec-
tiveness of the proposed integral technique for inferential quality
control is first demonstrated through a numerical example. Then, a
self-validation strategy is developed for the simulator of an indus-
trial SBR process; and in such a sense, the present work extends the
applicability of the soft-sensor developed by Godoy et al. [21].

2. Inferential quality control with self-validating
soft-sensor

For a given multivariate process, call x = [x1. . .xm]′ ∈ �m the
vector of online measurements and y = [y1. . .yp]′ ∈ �p the vec-
tor of quality variables. Both x and y are standardized vectors (i.e.,
mean-centered and scaled). Assume that N offline measurements of
each variable were collected while the process was operating under
normal conditions. Then, the following extended PLS regression
model can be derived [11]:

x = Pt + ∼
x, y = Qu + ∼

y, (1)

u = Bt + ũ , (2)

where {x̃, ỹ, ũ} are the model residuals, and the latent vectors t and
u are respectively calculated from x and y, as follows:

t = R′x, u = S′y. (3)

The matrices P, Q, R, S, and B, are obtained through the PLS-
NIPALS algorithm [11,22,23]. This technique implicitly assumes
that both x and y are online measured, and projects the mea-
surement vectors into low-dimension spaces defined by A latent
variables which are then regressed.

In this work we assume that the quality variables, y, are not
online available. On the basis of Eqs. (1), (2) and (3), it is possible to
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