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a  b  s  t  r  a  c  t

Iron  ore  sintering  is  the  second-most  energy-consuming  process  in  steelmaking.  The  main  source  of
energy  for  it  is the  combustion  of  carbon.  In order  to reduce  energy  consumptions  and  improve  industrial
competitiveness,  it is  important  to  improve  carbon  efficiency.  Reliable  online  prediction  of  the  carbon
efficiency  would  be extremely  beneficial  for making  timely  adjustments  to  the  process  to improve  it.  In
this  study,  the  comprehensive  carbon  ratio  (CCR)  was  taken to  be  a measure  of the carbon  efficiency;  and
a soft sensing  system  was  built  to make  an  online  estimation  of  the  CCR.  First, the  sintering  process  was
analyzed,  and the  key  characteristics  of the  process  parameters  were  extracted.  Then,  the  configuration
of  the soft  sensing  system  was  devised  based  on  the  characteristics  of the  process.  The  system  consists
of  three  parts:  an image  selection,  an image  segmentation,  and  a  hybrid  just-in-time  learning  soft  sensor
(HJITL-SS).  First,  an image  selection  method  was  devised  to automatically  select  the key  frames  (KFs)
from  the  video  taken  at the  discharge  end  of the  sintering  machine.  Then,  a  genetic-algorithm-based
fuzzy c-means  clustering  method  was  devised  to extract  feature  parameters  from  the KFs.  Finally,  an
HJITL-SS,  which  consists  of online  and  offline  submodels,  was  devised  to  estimate  the  CCR using  the
extracted  feature  parameters  as  inputs.  Actual  run data  were  used  to  verify  the  validity  of our  system.
Accuracy,  overfitness,  and  error  distribution  of  the  HJITL-SS,  offline,  and  JITL-based  soft  sensing  methods
were  compared,  which  show  the  validity  of the  HJITL-SS.  The  actual  run results  also  show  the  validity  of
the  soft  sensing  system  with  97%  of  the  actual  runs  are  in  an  acceptable  range.

© 2017  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

A typical iron ore sintering process mainly consists of propor-
tioning, ignition, sintering, screening, and weighting. Iron ores and
coke fines are heated in this process to produce sinter with a cer-
tain chemical composition and strength for feeding into the blast
furnace [1]. It is the secondary most energy consuming procedure
in steel making industry. Its main energy is from the combustion
of coke, which consists primarily of carbon. In order to reduce the
energy consumptions and improve the competitiveness of an enter-
prise, it is necessary to improve the carbon efficiency.
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Before any improvement can be made, a metric of the carbon
efficiency must first be specified. There have been various attempts
to do that for different industrial processes, such as a commercial
pharmaceutical process [2], and a manufacturing process [3]. And
for iron ore sintering, Chen et al. suggested the comprehensive car-
bon ratio (CCR), which is the amount of coke used per ton of sinter
[4,5]. This is the metric employed in this study, and its value should
be as small as possible.

Lab measurements to obtain information for calculating the CCR
are possible. However, they are done long after the process is fin-
ished. So, they cannot provide real time information for optimizing
the process. Reliable online prediction of the CCR would be ben-
eficial, as it would allow control room personnel to make timely
adjustments to the process to improve the carbon efficiency.

A soft sensor is an inferential model based on software technique
to estimate the value of a process variable [6]. This is in contrast to
a physical sensor that directly measures the value of the process

http://dx.doi.org/10.1016/j.jprocont.2017.01.006
0959-1524/© 2017 Elsevier Ltd. All rights reserved.

dx.doi.org/10.1016/j.jprocont.2017.01.006
http://www.sciencedirect.com/science/journal/09591524
http://www.elsevier.com/locate/jprocont
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jprocont.2017.01.006&domain=pdf
mailto:chenxin@cug.edu.cn
dx.doi.org/10.1016/j.jprocont.2017.01.006


X. Chen et al. / Journal of Process Control 54 (2017) 14–24 15

variable. The values of process variables can be obtained through
lab measurement. However, the measurement results are available
after significant delays. This can be prevented through soft sensors
as they are able to predict the process variables online [7,8]. In this
paper, a soft sensor is build to predict the CCR online. As the process
is very complex, the mechanism of which is not well understood,
data-driven modeling methods are often used to build such soft
sensors [9]. There are two key problems involved in building a data-
driven soft sensor: determine the input parameters, and devise an
appropriate soft sensing method.

The first is the determination of input parameters. In a sintering
process, cross-sectional images of the sinter bed is taken by a CCD
camera located at the discharge end of the sintering machine. It
consists of three zones: a background zone, a flame front zone, and
a hot zone. It is observed from actual run sintering process that the
CCR is the lowest when the image has the following features:

1) it has a relatively high average grayscale value,
2) the flame front zone occupies about 30% of the area of the sinter

bed,
3) the ratio of the area of the hot zone and the area of the flame

front zone is around 0.4, and
4) there is a relatively big difference between the grayscale value

of the flame front zone and the grayscale value of the hot zone.

So, the features of the images, which can be characterized by some
feature parameters extracted from three zones, are strongly corre-
lated with the CCR. These parameters are used as inputs of a soft
sensor to estimate the CCR.

The second is to devise an appropriate soft sensing method. Con-
ventional offline soft sensing methods, such as a back-propagation
neural network (BPNN), a support vector machine (SVM), and an
extreme learning machine (ELM), are widely employed in indus-
trial processes [6,9]. A BPNN has been proven to have the mapping
ability of any nonlinear characteristics, and it is the most widely
used offline soft sensing method [8,10,11]. So, the BPNN method
was chosen to build a soft sensor in this study.

Since a sintering process is very complex, a single BPNN model is
not efficient enough to describe the whole. If a single BPNN model
is trained only to predict the current CCR without reference to the
past and future values of the CCR, it easily leads to low prediction
precision and bad generalization performance. A multi-task learn-
ing is an effective way to solve these problems. It aims at improving
the generalization performance and prediction precision by train-
ing a BPNN to predict the CCR at different time points in parallel
using a shared representation. It can exploit the intrinsic related-
ness among the time series, and has been widely used in the time
series prediction problems [12]. In this study, an integrated model
that combines a multi-task learning and a BPNN was devised to
model the sintering process.

The parameters in the offline soft sensing method are trained
in advance and cannot be changed online. So, although they are
quick in prediction, they cannot update online. The just-in-time
learning (JITL) is currently an attractive way to compensate for the
disadvantages [13,14]. In a JITL structure, a local model is built using
nearest neighbours (the most relevant samples from the historical
dataset) around a query sample when a prediction is required. The
JITL-based method uses a local model structure, and is different
from global models, such as the offline and recursive soft sensors.
It is built online in a lazy learning manner [15–17]. Thus, the most
relevant samples from the historical dataset are tracked by the JITL
model, and then the samples are used to train the online soft sensor.

In order to improve the online estimation precision of a soft
sensor, a hybrid JITL soft sensor (HJITL-SS) was devised. It takes
into account the time series information from offline model and
the information of the nearest neighbours from online model. The

hybrid sensor combined the very best of the offline and online
models to estimate the carbon efficiency in an iron ore sintering
process.

As the best of our knowledge, this is the first time to build a
data-driven soft sensor for the carbon efficiency of an iron ore sin-
tering process by using the feature parameters extracted from the
cross-sectional images of the sinter bed as inputs. Although there
have been several studies on the application of a BPNN, a SVM, and
an ELM for modeling of different complex processes, using these
techniques especially for the online estimation of the carbon effi-
ciency of an iron ore sintering process has not been reported in the
literature.

This study also provides a comprehensive comparison of the
HJITL-SS with commonly used soft sensing methods for the esti-
mation of the CCR. The actual iron ore sintering process have a
strict requirement on the sensor. The effectiveness of the sensor
is evaluated in terms of three metrics: (1) Accurracy. The accu-
racy is thoroughly evaluated through the mean square error (MSE),
the mean absolute percentage error (MAPE), and the coefficient of
determination (R2) of the testing dataset. (2) Overfitness. As a com-
mon  problem of data-driven modeling methods, the overfitness of
these methods was evaluated. And (3) error distribution. If the pre-
diction error is beyond an acceptable range, the estimation is failed.
It is necessary to reduce the number of failures as much as possible.

The remaining of this paper is organized as follows. Section 2
explains the basic principles of the BPNN, the SVM, and the ELM
methods. Section 3 briefly describes an iron ore sintering process,
analyzes its main characteristics, and defines the CCR as the metric
for the carbon efficiency. Section 4 describes the design of the HJITL-
SS based on the characteristics of the process. Section 5 explains a
genetic-algorithm-based fuzzy C-means (GA-FCM) clustering algo-
rithm for the extraction of the features of the cross-sectional image
of the sinter bed. Section 6 describes the development of the HJITL-
SS soft sensing method. Section 7 uses the data collected from actual
runs to verify the validity of our method, and shows the results
of actual runs. The validity is studied by comparing the HJITL-SS
with commonly used soft sensing algorithms in terms of accuracy,
overfitness, and error distribution.

2. Basic principals of data-driven soft sensing methods

This section describes the basic principle of a BPNN, a SVM,
and an ELM for the soft sensing of the CCR. Suppose that there
are l training samples taking as (X1, y1), (X2, y2), . . .,  (Xl, yl), Xi =
[xi1, xi2, . . .,  xid]

T ∈ R
d is the ith input. yi ∈ R  is the corresponding

output.

2.1. BPNN

The input of the BPNN model is Xi = [xi1, xi2, . . .,  xid]T. And the
output is

ŷi = BPNN(Xi) =
nh∑
j=1

wjo logsig

(
6∑
d=1

wijxid + �j

)
+ �o, (1)

where nh is the number of neurons in the hidden layer; wij is the
weight connecting the ith input neuron to the jth hidden neuron;
wjo is the weight connecting the jth hidden neuron to the output
neuron; and �j and �o are the thresholds for the hidden and output
layers, respectively.

The variables wij , wjo, �j, and �o are determined by training
the BPNN. nh is one of the important parameter in BPNN, and



Download	English	Version:

https://daneshyari.com/en/article/4998464

Download	Persian	Version:

https://daneshyari.com/article/4998464

Daneshyari.com

https://daneshyari.com/en/article/4998464
https://daneshyari.com/article/4998464
https://daneshyari.com/

