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a  b  s  t  r  a  c  t

In  this  paper,  a dual  least  squares  support  vector  machines  (LS-SVM)  is  proposed  to  model  the  thermal
process.  The  infinite-dimensional  system  is  first  transformed  into  a  finite-dimensional  system  through
space-time  separation.  Then,  the dual  LS-SVM  model  is to  approximate  the  two  nonlinearities  embedded
in the  system.  Through  space-time  synthesis,  the  dual  LS-SVM  based  spatiotemporal  model  is  able  to
approximate  the  complex  DPS  with  inherent  coupled  nonlinearities.  The  generalization  performance  of
the proposed  model  is  discussed  using  Rademacher  complexity.  Finally,  simulations  on  a curing  process
demonstrate  the  effectiveness  of  the  proposed  modeling  method.
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1. Introduction

Many industrial processes, such as, semiconductor manufactur-
ing, lithium ion battery and curing process, belong to nonlinear
distributed parameter systems (DPSs) [1,2], which are described
in partial differential equations (PDEs) with boundary and initial
conditions. These kinds of systems have strong spatiotemporal
dynamics that are extremely difficult to model and control [3]. A
finite-dimensional model that could approximate the spatiotem-
poral dynamics of DPS is desirable in engineering applications [4].
In recent years, quite lots of research are reported on modeling and
control of DPSs [5–8].

The space-time separation based methods, using spatial basis
function (BF) expansion, have been widely applied for model
reduction of the parabolic type DPSs because of the slow/fast
separation property [1,2]. After the spatial BFs are selected, the
finite-dimensional model can be derived for the temporal dynamics
by using the Galerkin method [9] or traditional data-based identi-
fication methods [10,11].

There are many discretization method used to obtain the ordi-
nary differential equation (ODE) model. Such as: finite difference
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method (FDM) [12] and finite element method (FEM) [13], etc.
These methods using local spatial BFs can be easily applied to
transform the infinite dimensional model into the finite dimen-
sional temporal model. However, these methods will often lead
to a high-order temporal model for a good model approximation,
which may  not be suitable for controller design. Though the spectral
method [14,15] using global spatial BFs is able to obtain the analyt-
ical model, it requires the system to have homogeneous boundary
conditions. In summary, all these methods require the system to be
known.

When the DPS of the thermal processes is unknown in most of
real-world applications, the modeling has to rely on the data-based
approach. The Karhunen–Loève (KL) method [16–19], which is also
called proper orthogonal decomposition (POD) or principal com-
ponent analysis (PCA), is widely used to obtain principal empirical
eigenfunctions (EEFs) from the experimental data. KL method is
not a discretization method. It is an algorithm enabling a stochastic
field to be represented with a minimum number of degree of free-
dom. Compared with the above discretization methods, KL method
can obtain low-order ODE model efficiently without sacrifice the
model precision. When the proper spatial BFs are learned from data,
the low-order temporal model of DPS can be easily constructed
using the existing methods, such as the least squares support vec-
tor machines (LS-SVM) [20], the neural network [21], Volterra [22],
fuzzy model [23] and block-oriented models [24,25].
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It is well-known that LS-SVM can approximate any nonlinear
function, and SVM combination with KL method has ever been
extended to DPS modeling by Qi [26]. However, this method is
not designed for the process with two coupled nonlinear dynam-
ics, and it is only suit for the general DPS process. Many of thermal
processes, like the example discussed in this paper, have complex
nonlinearities that consist of two coupled nonlinear functions with
respect to the inputs and process output. It is well known that the
modeling performance highly depends on how much the model
structure matches the process. So our paper is to develop a dual
model structure for the widely existing process that contains two
inherently coupled nonlinearities. Under this model structure, dif-
ferent methods like SVM, LS-SVM, NN, etc can all be applied. This
paper will focus on the LS-SVM method. As the model structure
matches well with the process, it can achieve better performance.
Once the spatiotemporal model is estimated, Rademacher com-
plexity is developed to find the generalization error bounds [27,28].
Rademacher complexity has been proved to be an efficient method
in the analysis of many learning problems like pattern classification
and regression. However, this method has not been used in DPS.

In this study, a Dual LS-SVM modeling approach is proposed
for the nonlinear distributed thermal processes with inherent cou-
pled nonlinear dynamics. Under the space-time separation with KL
decomposition, the temporal dynamics will be estimated using two
LS-SVMs. After the spatiotemporal model been acquired, the gener-
alization performance of the model is discussed using Rademacher
complexity. The simulation experiment on the selected cure oven
[15,22] will be carried out for further validation and the comparison
study.

2. Problem description

Many of industrial thermal processes can be expressed in the
general form as follows:
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∂T
∂x

|
x=0

= 0
∂T
∂x

|
x=x0

= 0

∂T
∂y

|
y=0

= 0
∂T
∂y

|
y=y0

= 0

∂T
∂z

|
z=0

= 0
∂T
∂z

|
z=z0

= 0

(2)

where T = T(x, y, z, t) denotes the temperature (◦C) at time t and
location (x, y, z), x ∈ [0, x0], y ∈ [0, y0] and z ∈ [0, z0] are spa-
tial coordinates, c is the specific heat coefficient (J/kg◦C), f c (T)
and fr (T)are unknown nonlinear effects of convection and radi-
ation, respectively. Q = Q (x, y, z, t) is the heating source, � and
k are the density (kg/m3) and the thermal conductivity (W/m◦C)
respectively.

The thermal conductivity k and the density � of Eq. (1) are
dependent on the temperature, and can be expressed as

k = k0 + k̄(T), � = �0

1 + �̄(T)
,

where: k0 and �0 are nominal values around the working point,
k̄(T) and �̄(T) are functions of T(x, y, z, t).
Thus, Eq. (1) can be rewritten to the follow form:
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Fig. 1. Structure of the ODE model ai(t).
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is an unknown nonlinear function with respect to T. It is obvious
that the right hand of Eq. (3) has two  nonlinear function F(·) and
Q(·), where Q(·) is a nonlinear function about u(t).

The model Eq. (3) described in PDE cannot be used directly for
online estimation and control due to its infinite-dimensional prop-
erty. A finite-dimensional ODE model is usually needed for practical
applications. With the help of KL method (see in Appendix A), the
spatiotemporal measurements T(x, y, z, t) can be decoupled into the
following equations using a set of spatial BFs

{
�i(x, y, z)

}∞
i=1

. Due to
the slow/fast properties of the parabolic system (1), the slow modes
of the dynamics will be remained in the following expression.
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�i(x, y, z) · ai(t) (4)

Qn(x, y, z, t) =
n∑
i=1

�i(x, y, z) · bi(t) (5)

where ai(t) is the ODE model of the spatiotemporal model (1), n
is the order of the ODE model that can be estimated using Eq.
(A.12), bi(t) is a nonlinear function of the manipulated inputs u(t) =
[u1(t), u2(t)· · ·unu (t)]T with nu ∈ R. As the derivation in Appendix B,
ai(t) can be expressed as follows:

ai(t) = gi(ai(t − 1)) + hi(u(t − 1)) (6)

The structure of ai(t) can be described in Fig. 1, where q is the for-
ward operator. It is obvious that the ODE model ai(t) is composed of
two nonlinear block gi(·) and hi(·) with respect to the manipulated
inputs and the process outputs. In order to model this complex
dynamics efficiently, the model structure should be designed to
have the similar configuration to handle these two nonlinear mod-
ules.

According to the above analysis, the original system (1) is a non-
linear infinite-dimensional model. To model this system, KL will
be first used to transform the infinite-dimensional model into a
finite-dimensional model, where the model order n can be esti-
mated using Eq. (A.12). Then a novel dual-model structure will be
specially designed for DPS that contains two  inherently coupled
nonlinearities (Eq. (6)). Under this model structure, different meth-
ods like SVM, LS-SVM, NN, etc all can be applied. This paper will use
LS-SVM to model the dual-model structure.
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