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a  b  s  t  r  a  c  t

This paper  develops  a sensor  fault  diagnosis  (SFD)  scheme  for a multi-input  and  multi-output  linear
dynamic  system  under  feedback  control  to  identify  different  types  of  sensor  faults  (bias,  drift  and  precision
degradation),  particularly  for the incipient  sensor  faults.  Feedback  control,  leading  to  fault  propagation
and  disguised  fault  rectification,  imposes  the  challenge  on  the  data-driven  SFD.  With  only  available  out-
put  data  in  closed  loop,  the  proposed  scheme  comprises  two  stages  of residual  generation  and  residual
evaluation.  In the  residual  generation,  a data-driven  identification  of  the  residual  generator  for  the  feed-
back control  system  is  proposed.  One  class  of  parameters  in the  residual  generator  are  estimated  using
process  delays  while  another  class  of  parameters  describing  the  output  dynamic  are  derived  by  the  Bayes’
formula.  The  means  and  variances  control  charts  of  online  calculated  residuals  are  made  to judge  the  root
cause.  Two  case  studies  are  performed  to illustrate  the  effectiveness  of  the  proposed  method.

©  2017  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

To ensure proper functionality of complex systems, advanced technologies for performance diagnosis and control have been widely
incorporated into engineering designs to solve sophisticated, expensive and safe systems [1,2]. These performance diagnosis and control
functionalities necessitate the use of an ever-increasing number of sophisticated sensors and measurement instruments to provide us with
valuable information about operating conditions and critical quantities. Measurement instrument faults may  result in improper action
of the process control system and/or incorrect conclusion drawn by the process fault detection and diagnosis system, which can cause
performance degradation or operation shutdown. This in turn necessitates the implementation of more reliable sensor fault detection and
diagnosis methods [3–5].

The conventional engineering method for sensor validation checks and recalibrates the sensor periodically by following a set of prede-
termined procedures [5]. With the increasing number of interconnected subsystems and associated sensors, it has become less and less
feasible and cost-effective to check all the sensors periodically. On the other hand, the hardware redundancy approach has been widely
used in many complex and safe systems [6]. Although the method is relatively easy to implement and it can grant a high certainty in the
detection and isolation of faulty sensors, the use of redundant sensors may  not be always feasible due to the cost and space constraints. To
avoid the use of redundant sensors, sensor fault detection and diagnosis in dynamic systems has received more and more attention over
the last two decades, both in a research context and also in industries.

Most contributions in sensor fault diagnosis (SFD) rely on the analytical redundancy principle. This basic idea is to use accurate system
models to capture the dynamics of the system as well as the sensors themselves. Based on a nominal model established in the fault-free
conditions, residuals can then be generated as the difference between the actual sensor readings and the values estimated from the nominal
model. If a fault occurs, the residual signal can be used to identify the malfunction. Several residual generation schemes have been well
developed in literature [7–11]. The most frequently used analytical redundancy methods include diagnostic observer, Kalman filter and
parity relations. These residual generators are designed based on a deterministic system model, such as the input-output model or the
state space model with prior knowledge of model structures and parameters. Redundancy in the model-based design can help construct
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the corresponding residual generator, making further fault isolation achievable. Nevertheless, as it is mentioned, the analytical redundancy
principle needs an accurate analytical model of the system as well as the sensors, so prior deep understanding of their underlying physics
is required. Inspired by the fact that the measurements of a sensor depict the dynamic characteristics of the system as well as those
of the sensor itself, system identification techniques have been employed to construct an empirical model, such as state space models,
auto-regressive-moving-average models and transfer functions, to identify the analytical relations among the measured variables in the
dynamic system. Since the operating system is typically not permitted to operate in an open loop, the closed loop identification of the
dynamics of the system as well as the sensors themselves is usually necessary, but compared with the open-loop identification, the closed
loop identification is not easily successful because there are correlations between output noises and system inputs [12–17].

With the development of process instrumentation and data collection techniques, a large amount of data can be easily stored in the
database. Multivariate variable analysis (MVA) approaches have been widely developed as alternatives in the last ten years such as principle
component analysis (PCA) [3,4,18] or partial least squares (PLS) [19,20]. They are more flexible and rarely rely on the process knowledge. To
cope with the process dynamics, several methods, including the dynamic recursive, the fast moving window and the multi-mode variants of
MVA  algorithms, have been developed [4,18,21–23]. Then based on the contribution of each measurement variable to the individual score
of the multivariable latent models, the contribution plot technique [24] is used to identify the most likely root cause. However, there are
several limitations when MVA  approaches are applied. First, the collected data contain a large amount of data with the stationary behavior,
but there is only a small number of data in the initial transient stage because most of the fluctuations would be eliminated by feedback
control systems. Although the data in the initial transient stage often contain the critical information for diagnosis and control systems, it is
still difficult to detect incipient sensor faults. This problem has seldom received attention in literature. Second, a sensor which is declared
faulty may  appear in four forms, namely: bias, drift, complete failure and precision degradation. Except for complete failure which means
the sensor reading remains constant regardless of the changes in the actual value, the fault will be compensated by the controller actions.
This will let the fault be masked because of the sensor located at the feedback loop. Moreover, in the multivariable control loop, there is
often coupling. If there is coupling, the sensor fault effects can propagate to other feedback loops and they can significantly impact the
overall process performance [25,26]. Therefore, large sensor fluctuations can respond to other faulty sensors in real measurements so that
it is erroneously detected as a fault.

The process monitoring methods, including the analytical redundancy methods and data driven methods, consist of two  main stages:
off-line for setting control limits and on-line for testing. At the off-line stage, a residual generation based on system models is designed in
analytical redundancy methods. Some statistics and confidence lines would be constructed using the normal data in data-driven methods.
At the on-line stage, a new sample is applied to the model to calculate the residual or statistics for evaluating whether the sample exceeds
its control limit. If the sample is out of the control limit, the sample is marked as a faulty event; sequentially the detection and further
diagnosis of the faults are conducted.

An accurate model of the complex system that can predict the evolution of measured variables is difficult to obtain. From the viewpoint
of the SFD performance, both the MVA  approach and analytical principle models have advantages and drawbacks no matter whether they
have statistical or mechanistic nature for closed loop sensor fault diagnosis. In process monitoring methods, the mechanistic methods and
data driven methods, the precision of the models has great influence on the monitoring performance. In terms of mechanistic methods
for process monitoring, there is no difference between the open loop and the closed loop because the accurate process model is known
in advance. However, considering the data-driven methods, the collected data in the open loop and the closed loop may  be differently
informative. Because of the feedback control actions, the correlations occurring in the output variables come from the influence of the input
variables, and their outputs may  be transmitted to part of or all the input variables. Thus, there are correlations between the noises (process
noises and measurements noises) and the process inputs. According to the system identification theories, the estimated process parameters
would be biased if the input and the output data from the closed loop are directly applied. They will cause the significant degradation of
the monitoring performance. However, most of the process monitoring problems in literature only considered the open-loop situation,
but they did not mention the open-loop explicitly. Those methods have been systematically summarized in Ding’s book [23].

Moreover, in the past, there was not much work on data driven based model approaches for closed loop sensor fault diagnosis; still,
some of the approaches are promising. Gertler and Cao [27] proposed PCA-based fault diagnosis in the presence of control and dynamics
to enhance analytical redundancy approaches. They concluded that PCA would be effective by changing the reference signals or controller
parameters for fault isolation under feedback control. However, the changes are often not permitted in practice. McNabb and Qin [28] used
one-order prediction errors of outputs to construct the feedback invariant subspace, which was  said to preserve open loop sensor fault
directions, but Wan  and Ye [29] found that the fault direction of one-order predictive errors could not eliminate the closed loop’s influence.
They developed a residual covariance based method, but the sensor fault is limited only to the precision degradation. The faulty sensor
reading is caused by different types of faults.

In order to address the above issues, a good method for the detection and diagnosis of a faulty sensor should have the following desirable
characteristics. (1) It is easy to distinguish where a sensor fault occurs in the feedback control loop. (2) It is able to detect and diagnose
an incipient faulty sensor promptly for the purpose of diagnosis and control in a real-time environment. (3) It is capable of detecting and
diagnosing a faulty sensor even in the case when multiple faulty sensors occur at the same time and the faults come from bias, drift or
precision degradation. In this paper, a residual based SFD scheme is proposed to solve the above problems. With the assumption that only
closed loop data in the normal operation are available, the data driven approach constructs a residual generator based on the overall closed
loop outputs. The vector of the residual generator has a special structure and each element of the residual vector is paired with exactly
one of the faulty sensors. The remaining part of the paper is organized as follows. Section 2 gives the problem formulation of SFD in the
MIMO  feedback control system. The weak points will be explained when the conventional SFD methods for the open loop system is directly
applied to the feedback control system. Then the detailed residual generator model is proposed in Section 3 Particularly, the estimations of
the parameters of the residual generator for the overall closed loop system are clearly derived. Section 4 gives a detailed residual evaluation
and diagnosis procedure. Illustrative examples are given in Section 5 to present the performance of the proposed method through two  sets
of benchmark data from a numerical example and a simulation column. The final section gives conclusions to the paper.
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