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a  b  s  t  r  a  c  t

By  introducing  a stage-wise  prediction  formulation  that  enables  the  use  of highly  efficient  quadratic
programming  (QP)  solution  methods,  this  paper  expands  the computational  toolbox  for  solving  step
response  MPC  problems.  We propose  a novel  MPC  scheme  that  is able  to incorporate  step  response  data
in a  traditional  manner  and  use  the  computationally  efficient  block  factorization  facilities  in  QP solution
methods.  In  order  to solve  the  MPC  problem  efficiently,  both  tailored  Riccati  recursion  and  condensing
algorithms  are  proposed  and embedded  into  an  interior-point  method.  The  proposed  algorithms  were
implemented  in the  HPMPC  framework,  and  the  performance  is  evaluated  through  simulation  studies.
The  results  confirm  that  a  computationally  fast  controller  is  achieved,  compared  to the  traditional  step
response  MPC  scheme  that  relies  on  an  explicit  prediction  formulation.  Moreover,  the  tailored  condens-
ing  algorithm  exhibits  superior  performance  and  produces  solution  times  comparable  to  that  achieved
when  using  a  condensing  scheme  for an  equivalent  (but  much  smaller)  state-space  model  derived  from
first-principles.  Implementation  aspects  necessary  for high  performance  on  embedded  platforms  are
discussed,  and  results  using  a  programmable  logic  controller  are  presented.

© 2017  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Model predictive control (MPC) is an advanced control method
based on numerical optimization. MPC  uses a model of the plant
to predict future state (or output) trajectories in a well defined
constrained multivariable optimal control framework. The MPC
optimization problem can be formulated as a multistage prob-
lem. When the plant model is linear, and a discrete state-space
representation is used, the characteristic structure of the multi-
stage optimization problem becomes apparent. The plant model
equations (which become equality constraints in the optimization
problem) are such that each stage equation involves coupling vari-
ables that link one stage to the next.

The capability of exploiting the multistage structure through
the use of dynamic programming or block factorization techniques
(e.g. Riccati recursion) was identified in [1,2] as a key factor to con-
sider when developing efficient MPC  algorithms. This observation
has led to the development of several high-speed interior-point
solvers among which Fast MPC  [3], FORCES [4], and HPMPC [5] are
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noteworthy in the context of embedded MPC. Alternative solvers
that do not exploit the inherent multistage problem structure in
MPC  are also common. In order to use such solvers, a usual prepa-
ration step involves recasting the MPC  problem as a QP problem
that does not necessarily preserve the multistage structure. For
instance, qpOASES [6], as well as most active-set solvers, prefer
a condensed QP problem formulation where the state variables are
eliminated.

For MPC  problems that use step response models, the existing
MPC  algorithms mainly resort to compact formulations of the pre-
diction model where one stage equation can depend on variables
from all stages (see e.g. [7–10]). Consequently, the choice of a QP
solver for MPC  schemes that use step response models presently
excludes efficient solvers whose strength is their ability to exploit
the multistage structure (readily apparent in MPC  schemes that use
state-space models).

It is possible to obtain an equivalent state-space realization
from step response models [11,12], and it is therefore possible to
redesign a given step response MPC  scheme to use a state-space
realization instead [8]. However, in practical examples, where real
(possibly noisy) plant data is involved, even very efficient and
numerically stable realization algorithms resort to heuristic criteria
when identifying significant states [11,8]. As a result, the (minimal)
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state-space realization may  have a relatively large state dimension,
where the system matrices do not exhibit any obvious structure
that can be exploited in a systematic way [11]. If some model reduc-
tion technique is used, validation procedures will be required to
ensure that an acceptable response is produced by the resulting
state-space model.

It is clear that opting for a state-space realization from step
response models may  not always result in easy and straightfor-
ward control design, commissioning, or maintenance procedures
for industrial MPC  installations. Recall that the main reason why
step response models are widely accepted in industrial practice,
and are still common in industrial MPC  schemes, is that the step
response model approach facilitates easy and intuitive identifica-
tion, control design, and maintenance procedures [13,8,7].

The main motivation leading to the contributions in this paper
is the need to fill the gap between fast QP solver developments and
industrial MPC  implementations based on step response models.
Therefore, this paper proposes a new, but mathematically equiva-
lent, formulation for step response MPC. The formulation facilitates
the use of block factorization in the QP solution method, and it
incorporates the original step response data in a traditional way.
A dedicated state-space realization algorithm is not needed in the
proposed MPC  scheme. This implies that no extra model valida-
tion procedures are required. The implications for both Riccati
recursion and condensing based solvers are studied. Discussions
on implementation aspects in the HPMPC [5] framework, targeting
embedded MPC  applications, are also included.

Further motivation and background for the methods proposed
in this paper are given in Sections 3–4, and the main contributions
of this work are presented in Sections 5–8. Simulation results from
a simple MPC  problem and a more complex industrial example are
discussed in Sections 9–10, and concluding remarks are given in
Section 11.

2. Notation and definitions

In this paper, the following notation and definitions are used.

• X represents the state vector of a state-space representation of
step response models, where the vector dimension is usually
larger than that of the state vector x of a corresponding state-
space model derived from first-principles.
• X(j) or x(j) represents a state (or stage) vector for the stage j in a

multistage problem.
• xi(j) is element i in the stage vector x(j), i.e. x(j) = {xi(j)}i=nx

i=1 , where
nx is the number of elements in x(j).
• y(k + j|k) represents the prediction of y(k + j) using available infor-

mation at time k.
• ·̄ implies that the variable, vector, or matrix belongs to the aug-

mented state-space system, which includes the previous input as
a state variable.
• ·̃ indicates that the vector or matrix belongs to the recursive

state-space representation of step response models.
• ·̂ implies that the value of the vector is an estimate or a prediction.

For computed input moves, ûj:=�uj .
• ·d indicates that the variable or element is a dummy i.e. it does not

change the outcome (or value) of the computation it is involved
in.
• step-MPC (or step-response MPC) refers to the traditional step

response based MPC  scheme, where output predictions are typi-
cally computed explicitly.
• ress-MPC (or realized state-space MPC) is a state-space MPC

scheme, where the state-space model is obtained from step
response data, using a realization algorithm.

• srss-MPC (or step-response state-space MPC) is the new MPC
scheme proposed herein, based on the recursive computation of
output predictions using step response data (in a specially struc-
tured state-space representation).
• chol(·) represents a function that returns the Cholesky factor of

the input matrix.
• flops is an acronym for floating-point operations.

3. Multistage problems and block factorization

3.1. MPC  problem formulation

Industrial MPC  problems are typically formulated in terms of
controlled variables (CVs), disturbance variables (DVs), and manip-
ulated variables (MVs) (see e.g. [13,8,7]). The CVs are usually plant
outputs y(k) that can be measured or estimated, DVs are measured
(or estimated) disturbances d(k), and the MVs  are the control inputs
u(k). Based on these variables, an MPC  problem whose objective is
to track a given output reference ry(k) can be formulated as

min

Hp∑
j=Hw

‖y(k + j|k) − ry(k + j)‖2
Qy
+

Hu−1∑
j=0

‖�u(k + j)‖2
P

(1a)

subject to

�u  ≤ �u(k + j) ≤ �u,  u ≤ u(k + j) ≤ u, (1b)

y ≤ y(k + j|k) ≤ y, (1c)

u(k + j) = u(k + j − 1) + �u(k + j), (1d)

y(k + j|k) = ŷ(k + j|k), (1e)

where j ∈ {Hw, . . .,  Hp} for the output constraints, j ∈ {0, . . .,
Hu− 1} for the input constraints, Hw ≥ 1 and Hu ≤ Hp. The j-step
ahead prediction of the CVs, at time k, based on the plant dynam-
ics is represented by ŷ(k + j|k), and the implementation of Eq. (1e)
is crucial for the structure of problem (1). Furthermore, the way
the predictions ŷ(k + j|k) are made has a great effect on the per-
formance of the closed-loop system, and the choice of prediction
strategy is therefore an important point to consider when formu-
lating the MPC  problem [8].

Note that a straightforward extension of problem (1) to include
soft constraints and stability terms (or stability constraints) can be
made without losing the inherent multistage structure of the MPC
problem. Moreover, nominal closed-loop stability can be achieved
by an adequate choice of the weights Q̄y, P̄, and the horizon lengths
Hp and Hu (see e.g. [14]).

3.2. Effect of prediction strategy on QP problem structure

Consider the linear time-invariant (LTI) state-space model

x(k + 1) = Ax(k) + Bu(k) + Bdd(k), (2a)

y(k) = Cx(k) + Du(k) + w(k), (2b)

where x(k) is the state vector, d(k) is a known disturbance variable,
w(k) is an unknown disturbance, and A ∈ R

nx×nx , B ∈ R
nx×nu , Bd ∈

R
nx×nd , C ∈ R

ny×nx , D ∈ R
ny×nu .

The predictions ŷ(k + j|k), for j = 1, . . .,  Hp, can be computed
explicitly by iterating Eq. (2). The explicit predictions provide the
possibility of eliminating the states from the decision variables of
Eq. (1), resulting in a dense QP problem. Although explicit predic-
tions are used, a sparse QP formulation that keeps the states as
decision variables may  be preferable for some QP solver implemen-
tations. However, it can be seen in the following derivation that the
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