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a  b  s  t r  a  c  t

A new  sparse  dimensionality  reduction  method  named  sparse  global-local  preserving  projections  (SGLPP)
is proposed.  The  SGLPP  has two advantages.  First,  SGLPP  can  preserve  both  global  and  local  structures
of  the  data  set.  Second,  SGLPP  extracts  sparse  transformation  vectors  from  the  data  set.  The  extracted
sparse  transformation  vectors  are  able  to reveal  meaningful  correlations  between  variables,  which  signif-
icantly  improves  the  interpretability  of  SGLPP.  These  two  advantages  make  SGLPP  well  suitable  for  fault
detection  and  diagnosis  in industrial  processes.  Therefore,  a SGLPP-based  process  monitoring  method  is
developed  to  improve  the  interpretability  and  the  fault  detection  capability  of  monitoring  models  and  to
enhance  the  fault  diagnosis  capability.  A  full SGLPP  model  is  combined  with  a  set of  partial  SGLPP  mod-
els  to improve  the fault  sensitivity  and  to  track  the  propagation  of faults  between  process  variables.  In
addition,  three-level  contribution  plots,  i.e.,  the  variable-wise,  group-wise,  and  group-variable-wise  con-
tribution  plots,  are  constructed  for fault evaluation  and fault diagnosis.  The  effectiveness  and  advantages
of  proposed  methods  are  illustrated  with  an industrial  case  study.  The  results  indicate  that  the SGLPP
models  reveal  real  process  mechanisms  and  control  loops  between  process  variables,  and  thus  produces
interpretable  monitoring  results.  Moreover,  the SGLPP-based  method  has  better  fault  detection  capabil-
ity than  conventional  monitoring  methods.  Three-level  contribution  plots  well  show  the  effects  of  faults
on process  variables  and  produce  reliable  fault  diagnosis  results.

©  2016  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Process monitoring is an effective way to improve the safety
of industrial processes. It ensures safe operations, prevents equip-
ment damages and maintains the normal production by detecting
faults and diagnosing the root causes of faults. In the last several
decades, owing to the wide applications of modern measurement
techniques and the quick development of data analysis methods,
data-driven process monitoring, also known as multivariate sta-
tistical process monitoring (MSPM), has become more and more
popular [1–6]. Up to now, lots of MSPM methods have been pro-
posed on the basis of some widely used dimensionality reduction
techniques, such as principal component analysis (PCA) [7], partial
least squares (PLS) [8], independent component analysis (ICA) [9],
and locality preserving projections (LPP) [10]. These MSPM meth-
ods commonly extract a few latent variables from process data to
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capture main data features, and then build a monitoring model
using extracted latent variables for fault detection and diagnosis.

A common drawback of above dimensionality reduction meth-
ods is the lack of sparsity in their solutions. Because of this
drawback, each extracted latent variable is almost a linear combi-
nation of all input variables, hindering the physical interpretation
of latent variables. In many cases, the sparse representation is
required because it generates interpretable results and promotes
better generalization [11]. The sparse representation of PCA has
been widely investigated. For example, Zou et al. [12] proposed a
sparse PCA (SPCA) algorithm, which formulates PCA as a regression-
type optimization problem and imposes the elastic net (or lasso)
penalization on regression coefficients. D’Aspremont et al. [13]
used a semidefinite programming (SDP) relaxation to solve the
sparse PCA problem and proposed the DSPCA algorithm. Moghad-
dam et al. [14] proposed the greedy SPCA (GSPCA) algorithm based
on a greedy search technique. Journée et al. [15] developed a gen-
eralized power method named GPower for sparse PCA. Especially,
Sriperumbudur et al. [16] proposed an efficient algorithm to solve
the sparse generalized eigenvalue (GEV) problem using the d.c. (dif-
ference of convex functions) programming, which is applicable for
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sparse PCA, sparse canonical correlation analysis and sparse Fisher
discriminant analysis simultaneously.

Although sparse PCA (SPCA) has better interpretability than PCA,
it inherits a disadvantage from PCA. This disadvantage is that both
SPCA and PCA only preserve the global Euclidean structure (i.e.,
data variance) of data but totally neglect the local data structure
(i.e., local neighborhood relations among data points). Because the
local neighborhood structure is also a very important aspect of data
features, neglecting such important data information inevitably
degrades the performance of PCA and SPCA. Consequently, PCA and
SPCA cannot fully extract useful information from data. Moreover,
PCA and SPCA are easier to be affected by outliers and noises. In
recent years, to overcome the shortcoming of PCA, some new linear
dimensionality reduction algorithms have been proposed by com-
bining PCA with LPP, and they can simultaneously preserve global
and local structures of the data set [17–20]. In particular, the global-
local preserving projections (GLPP) proposed by Luo [18] builds a
unified framework for preserving both global and local data struc-
tures. PCA and LPP are unified under the GLPP framework, and they
are proved to be two special cases of GLPP [18]. However, similar to
PCA and LPP, GLPP lacks sparsity, which may  limit its applications
in the cases where the result interpretation is very important.

A monitoring model without sparsity has three drawbacks in
fault detection and fault diagnosis. First, it fails to reveal meaningful
process mechanisms and control loops between process variables
from process data. This drawback hinders the analysis and interpre-
tation of monitoring results. Second, because of the lack of sparsity,
a monitoring model may  suffer from the redundant coupling and
interferences between process variables, which reduces the fault
sensitivity and the fault detection capability. Third, based on a mon-
itoring model without sparsity, it is hard to accurately evaluate the
effect of faults on each process variable, which may  reduce the reli-
ability and accuracy of fault diagnosis. In real industrial processes,
there are complicated coupling between process variables, and thus
faults may  propagate between different process variables. In addi-
tion, a fault may  do more harm to other process variables rather
than the variables that cause the fault. All these bring large diffi-
culty to fault diagnosis. Due to the lack of sparsity, the monitoring
model cannot fully eliminate the meaningless coupling and inter-
ferences between process variables or reveal the propagation of
faults between process variables, which degrades fault detection
and diagnosis capabilities. Therefore, to improve the interpretabil-
ity and the fault detection capability of monitoring models and to
enhance the fault diagnosis capability, it is necessary to build sparse
monitoring models and propose corresponding fault detection and
diagnosis methods.

In this paper, the sparse global-local preserving projections
(SGLPP) algorithm is proposed and used for process monitoring. To
reveal meaningful correlations between variables, SGLPP extracts
sparse transformation vectors, which contain fewer nonzero ele-
ments, from a data set. The optimization problem of SGLPP is solved
by the sparse generalized eigenvalue (GEV) algorithm. A selection
index is proposed for choosing a sparse solution with appropriate
sparsity. A deflation procedure is developed for SGLPP to sequen-
tially extract a set of sparse transformation vectors from the data
set. A SGLPP-based process monitoring method is then developed.
A full SGLPP model, which is build based on all sparse transforma-
tion vectors, is combined with a set of partial SGLPP models, which
are separately build based on every sparse transformation vector, to
improve the fault sensitivity and to track the propagation of faults
between process variables. The T2 and SPE statistics are used for
fault detection. Based on the sparse monitoring model, three-level
contribution plots, termed as variable-wise, group-wise and group-
variable-wise contribution plots, are developed for fault evaluation
and fault diagnosis. The effectiveness and advantages of the pro-

posed methods are illustrated by a case study on the Tennessee
Eastman (TE) process.

Notation: X, �x and x denote matrix, vector and scalar, respec-
tively. The ith element in vector �x is denoted as xi. The ‖�x‖0
denotes the cardinality of �x (i.e., the number of nonzero elements
in �x). The �x ≤ �y(�x ≥ �y)  indicates that ∀i: xi ≤ yi(xi ≥ yi). Im is the
identity matrix with the size of m × m.  1n = (1,  . . .,  1)T ∈ 	n, and
[x]+ = max(0,  x). The �min(X) denotes the smallest eigenvalue of X.
Sm, Sm+ and Sm++ denote the sets of symmetric, positive semidefinite
and positive definite matrices with the size of m × m, respectively.
X+ denotes the Moore-Penrose pseudoinverse of X. The diag(�x)
denotes a diagonal matrix with the principal diagonal being �x.

2. A brief review of global-local preserving projections

Global-local preserving projections (GLPP) can preserve both
global and local structures of data [18]. Given a data set
X = [�x1, �x2, · · ·, �xn] ∈ 	m×n, GLPP seeks a transformation matrix
A = [�a1, �a2, · · ·, �al] ∈ 	m×l to map  X to Y = [�y1, �y2, · · ·, �yn] ∈
	l×n(l ≤ m)  by�yi = AT �xi, such that Y well retains global and local
structures of X. The objective function of GLPP is [18]

JGLPP(�a) = min
�a

1
2

{
�
∑

ij
(yi − yj)

2Wij − (1 − �)
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ij
(yi − yj)

2W̄ij

}
(1)

where yi=�aT �xi is the projection of �xi, �a ∈ 	m is a transformation
vector in A, and � ∈ [0,  1] is a weight coefficient to adjust the
tradeoff between global structure preservation and local structure
preservation. The term

∑
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2Wij in Eq. (1) is related to the

local structure preservation, and the term −
∑

ij(yi − yj)
2W̄ij corre-

sponds to the global structure preservation. Wij and W̄ij are weight
coefficients representing adjacent and non-adjacent relationships
between �xi and �xj , respectively, which are defined as [18]
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where �1 and �2 are constant parameters, and ˝k(�x) denotes the
neighborhood of �x that is defined by k nearest neighbors [18].

Eq. (1) can be rewritten as [18]

JGLPP(�a) = min
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where H is a diagonal matrix with Hii =
∑

jRij , Rij = �Wij − (1 −
�)W̄ij , and M = H − R is the Laplacian matrix. To take into account
the importance of yi that is measured by Hii, and further to avoid
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