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a  b  s  t  r  a  c  t

Missing  data  is  a commonly  encountered  and  challenging  issue  in  data-driven  process  analysis.  Several
methods  that  attempt  to estimate  missing  observations  for the  purpose  of control,  identification,  etc.  have
been  developed  over  the  decades.  However,  existing  methods  tend  to  produce  erroneous  estimates  when
the  percentage  of  missing  data  is  high  and mostly  do  not  exploit  the benefit  of parsimonious  or  sparse
signal  representations.  Recently  developed  compressed  sensing  (CS)  techniques  are  naturally  suited  to
handle the  problem  of  missing  data  recovery  since  they  provide  powerful  signal  recovery  methods  that
take  advantage  of  sparse  representations  of signals  in a set  of  functions,  known  as the  overcomplete
dictionary.  A majority  of these  signal  recovery  algorithms  assume  that the  dictionary  is  known  beforehand.
This  paper  presents  a method  to estimate  missing  observations  using  CS ideas,  but  with  an adaptive
learning  of the overcomplete  dictionary  from  data.  The method  is particularly  devised  for  signals  that  have
a block-diagonal  sparse  representation,  an assumption  that is  not  too  restrictive.  An  iterative  optimization
method,  consisting  of an  iterative  CS  problem  on  block-segmented  data,  for discovering  this  sparsifying
dictionary  is  presented.  Further,  we  present  theoretical  and  practical  guidelines  for  the  segmentation
size.  It is shown  that  the  error  at each  iteration  is bounded  for the  exact,  i.e.,  zero model  mismatch  and
noise-free,  case.  Demonstrations  on  five  different  systems  illustrate  the  efficacy  of the  proposed  method
with respect  to recovery  of missing  data  and  convergence  properties.  Finally,  the  method  is  observed  to
require  fewer  observations  than  a  fixed  dictionary  for a given  reconstruction  accuracy.

©  2016  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Control strategies, both classical and modern, critically depend
on the availability of measurements. Industrial measuring devices
(sensors) are known to experience intermittent failures and/or
produce outliers [19]. On the other hand, it is also a widely accepted
fact that measurements may  be only available on an irregular basis
in several applications, especially where manual measuring mecha-
nisms are deployed; for example, in the measurement of molecular
weight of a polymer, finesses of cement, etc. The foregoing three
apparently different scenarios can be, in fact, perceived as a single
problem of missing data since both the cases of outliers (after
identifying their locations) and irregular samples can be viewed
as that of regular sampling with missing data. In order to ensure
active, uninterrupted and quality control, it is therefore highly
essential to be equipped with methods that handle missing data.
Consequently, developing methods for missing data reconstruction
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has been an active topic of research for nearly a century now [29].
Recent literature, especially in the last two decades, has witnessed
the development of a good deal of control and identification algo-
rithms in presence of irregularly sampled data [34,42,7,47,46,18].
One of the earliest communicated methods was by Yates [45],
which assumed missing data in the response variable of a process. It
involves first estimating the parameters of a regression model (for
the response) from a block of complete observations and replacing
the missing data with the predictions from that model. However,
in the presence of noise, this method tends to produce estimates
with large errors, which is one of its main drawbacks. Bartlett
[3] proposed an iterative method that primarily minimized the
errors between statistical properties of blocks of complete data and
incomplete data. Although this method gives unbiased estimates, it
suffers from certain shortcomings that are similar to that of Yates’
method. Following these initial developments, several methods
that produce unbiased and efficient estimates of the missing obser-
vations have appeared on the forefront. These methods include the
well-known maximum likelihood-based expectation maximiza-
tion (EM) [9] and multiple imputation methods, see [29,22,27] for
a detailed exposition. In another work, Folch et al. [15] developed
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a MATLAB toolbox for missing data estimation based on principal
component analysis. Despite their successes, the aforementioned
methods suffer from one or a few serious shortcomings, namely,
obtaining inefficient and unbiased estimates, supplying initial
guess for estimates and very limited applicability to the small size
of available observations. Yang et al. [43] developed a method to
estimate missing data based on matrix completion. Although this
method yields unbiased estimates for lower percentage of missing
data, it cannot handle high percentage of missing data.

In this work, we propose to develop a novel missing data recon-
struction method based on CS ideas, that addresses most of the
above mentioned shortcomings. The origins of CS-based signal
recovery (CSSR) methods are rooted in the problem of recovering
a long signal {s[·]} of length N from a fewer set of M � N measure-
ments {y[·]} [10]. These measurements could be in the domain of
the signal or in a different basis – for example, measurements of
a time-domain signal in the frequency domain or in the wavelet
domain. There are usually two key assumptions involved in the
traditional formulation of CSSR methods: (i) the measurement and
signal are linearly related and (ii) there exists a “dictionary” in
which the long unknown signal s is sparse,  i.e., it has a signal repre-
sentation with very few K non-zero coefficients in that dictionary.
Mathematically, a dictionary is a generalization of basis to include
linearly dependent functions, which is also the idea in frame theory.

Recovering signals from limited and irregularly spaced data is
an old problem; however, the CS-based formulation in [10,6,38] is
novel because it aims to reconstruct the signal by first reconstruc-
ting its representation in a sparsifying dictionary.  This approach is
in stark deviation from the traditional reconstruction formulations,
which solely focus on reconstructing the signal in the domain of
observation.

A characteristic feature of CSSR problems is that they are
underdetermined problems, i.e., situations where the number of
unknowns (typically N) is higher than the knowns, which are the M
measurements. CS methods work around this hurdle by casting the
underdetermined problem in the raw domain as an overdetermined
problem in the sparsifying dictionary, providing M > K. This is the
key idea underlying the success of these methods. Fig. 1 schemati-
cally illustrates this idea. It is typically assumed that the sparsifying
dictionary, represented by the matrix B, and hence the overcom-
plete dictionary A, is known. In this case, various algorithms such as
basis pursuit (BP), orthogonal matching pursuit (OMP), etc. can be
used to reconstruct sparse representation of the signal from avail-
able data, see [13,30] for a detailed discussion of these algorithms.
However, in many applications, it is unrealistic to assume that the
appropriate sparsifying dictionary is known a priori.

Fig. 1. Overview of compressed sensing.

Given this situation, an approach that is widely followed is to
pre-select or fix the dictionary based on some mathematical consid-
erations. For instance, Lustig et al. [23] demonstrated a faster way
of reconstructing magnetic resonance images than the traditional
methods using CS techniques assuming these images are sparse in
Fourier basis. In another application of missing data reconstruc-
tion, Stankovic et al. [35] performed statistical analysis for efficient
detection of signal components from irregularly sampled data by
assuming the sparsifying dictionary to be the Fourier basis. How-
ever, in reality, a large class of signals are different from a pure
mixture of sinusoids. More importantly, as it is known in several
signal processing applications, a fixed dictionary is not necessarily
and usually the most appropriate dictionary for a given process. The
reason is that, a fixed dictionary, while being mathematically suit-
able, does not necessarily conform to the physics of the process.
Furthermore, in majority of the cases, the sparsifying dictionary
is not known a priori. Therefore, it becomes necessary to deter-
mine the sparsifying dictionary from data. It must be remarked that
in this pursuit, one rarely discovers a closed-form expression for
the dictionary. Consequently, efforts are usually directed towards
directly determining the dictionary matrix B or the overcomplete
dictionary A, assuming that the sensing matrix L is known. The
resulting dictionary is then said to be adaptive, i.e., derived from
data. A strikingly similar scenario exists in the class of source sepa-
ration problems, where it is required to recover “source signatures”
from mixture measurements [1]. The CS problem is analogous to the
case of underdetermined source separation problem, where one
has fewer mixtures than sources, but it is known that only a few
(sparse) sources that actually participate in the mixture genera-
tion. The fixed dictionary scenario corresponds to known source
signature problem, whereas the adaptive dictionary corresponds
to discovering the source signatures from the data as well. Wang
et al. [40] used fixed dictionary to estimate the missing observa-
tions in a wireless sensor network using the ideas of CS. Spoorthy
et al. [33] also used the fixed dictionary to estimate missing data
in sales gathering using CS techniques. The limitation of both the
methods is that they use fixed dictionary instead of adaptive dic-
tionary to estimate missing data. The advantages of using adaptive
dictionary over fixed dictionary are explained in the subsequent
paragraphs.

Adaptive dictionary estimation methods not only aid in extract-
ing the dictionary that is appropriate to a given application, but also
offer the provision of imposing the amount of sparsity demanded
by a particular application. The adaptive dictionary estimation
problem has received appreciable attention, in the general litera-
ture [2,14,25,28,44] and in image processing and source separation
applications [26,1]. In general, these methods implement two-step
approach that alternate between optimizing the sparse represen-
tation in a given dictionary and finding an optimal sparsifying
dictionary for a given representation. The method of optimal direc-
tions or dictionaries (MOD) algorithm, developed by Engan et al.
[14] and the K-SVD due to Aharon et al. [2] suffer from short-
comings in that they require a large number of training sets of y
to estimate sparsifying dictionary, which is not the case of missing
data, whereas a more realistic situation is that only a single set of
y is available. In another work, Duarte-Carvajalino and Sapiro [11]
optimized both measurement matrix L and dictionary B simulta-
neously such that the both L and B are incoherent. In the case of
present work, the method cannot be used since the sensing matrix
L is fixed. The work of Peyré et al. [26] is especially devised for
morphology component analysis of images and works with the
variational energy principle.

The main contribution of this work is towards developing a
method to reconstruct missing data using CS techniques with an
adaptively sparsifying dictionary, a method for which is also pro-
posed. The sensing matrix is essentially assumed to consist of ones
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