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a  b  s  t  r  a  c  t

Economic  model  predictive  control,  where  a generic  cost  is  employed  as  the  objective  function  to  be
minimized,  has recently  gained  much  attention  in model  predictive  control  literature.  Stability  proof  of
the resulting  closed-loop  system  is often  based on  strict  dissipativity  of the  system  with  respect  to the
objective  function.  In this  paper,  starting  with  a continuous-time  setup,  we consider  the ‘discretize  then
optimize’  approach  to  solving  continuous-time  optimal  control  problems  and  investigate  the  effect  of  the
discretization  process  on the  closed-loop  system.  We  show  that while  the continuous-time  system  may
be strictly  dissipative  with  respect  to  the  objective  function,  it is  possible  that  the  resulting  closed-loop
system  is  unstable  if the discrete-approximation  of the  continuous-time  optimal  control  problem  is  not
properly  set  up.  We  use a popular  example  from  the economic  MPC  literature  to  illustrate  our  results.

© 2016  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Economic model predictive control (e-MPC), a model predic-
tive control (MPC) approach to the optimal control of systems has
recently gained much popularity. The main difference between
e-MPC and existing MPC  approaches is the nature of the objec-
tive function being optimized. While conventional MPC  approaches
employ a positive-definite function that minimizes deviations from
desired set-point, the objective function in e-MPC is a generic cost
that is related to the economics of the system’s operation.

Two major techniques exist in the literature for designing digi-
tal controllers for systems: the emulation method and the direct
design method [1–3]. In the emulation method, the controller
design is done in the continuous-time domain followed by a dis-
cretization of the controller. In the direct design methodology, the
digital controller is designed directly using a discretized model or
a discrete approximation of the system. While emulation methods
do exist for MPC, most standard MPC  settings use a direct design
that involves discretizing both the system’s model and objective
function.

Of great importance in the context of economic-MPC is the dis-
sipativity of the system with respect to the economic objective as
this is one of the conditions on which the stability proof for the

∗ Corresponding author.
E-mail addresses: oio24@cam.ac.uk (O.I. Olanrewaju), jmm@eng.cam.ac.uk

(J.M. Maciejowski).

closed-loop system is often based. It has been shown [4,5] that
strict dissipativity of the system with respect to the economic cost
plays a central role in the stability proofs of the closed loop sys-
tem. It has also been shown in the economic-MPC literature that
if a system is dissipative with respect to the economic objective,
then static equilibrium operation of the system is optimal [5–7]. It
is therefore important to know what happens to the dissipativity
property when the continuous-time setup is ‘discretized then opti-
mized’ as done in the direct design method. Is it possible to have
a dissipative continuous-time setup and the discretized setup not
dissipative? Under what circumstances can these happen and how
can we avoid them?

These are the questions we  raise and attempt to answer in this
paper. We  show that due to the approximate discretization of the
underlying continuous-time optimal control problem, it is possible
to lose the system’s dissipativity (with respect to the given eco-
nomic objective) hence, possible loss of stability of the closed-loop
system. We  also show that the conventional MPC  scheme (where
the cost function is designed to be positive-definite) is immune to
such behaviour.

This paper is structured as follows: Section 2 introduces the
problem statement. The effect of approximate discretization on a
linear-quadratic optimal control problem is discussed in Section 3.
The effect of approximate discretization is extended to direct tran-
scription methods for solving optimal control problems in Section 4
with the focus on direct collocation methods. Section 5 contains a
popular example from e-MPC literature while Section 6 concludes
the paper.

http://dx.doi.org/10.1016/j.jprocont.2016.11.002
0959-1524/© 2016 Elsevier Ltd. All rights reserved.

dx.doi.org/10.1016/j.jprocont.2016.11.002
http://www.sciencedirect.com/science/journal/09591524
http://www.elsevier.com/locate/jprocont
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jprocont.2016.11.002&domain=pdf
mailto:oio24@cam.ac.uk
mailto:jmm@eng.cam.ac.uk
dx.doi.org/10.1016/j.jprocont.2016.11.002


2 O.I. Olanrewaju, J.M. Maciejowski / Journal of Process Control 49 (2017) 1–8

2. Preliminaries

In this paper, we consider the continuous-time, finite horizon
optimal control problem

J∗T (x) = min
u

J(x, u) �
∫ T

0

lc(x(t), u(t)) dt

subject to

⎧⎨
⎩

ẋ(t) = f (x(t), u(t)) ∀t ∈ [0,  T]

x(t) ∈ X, u(t) ∈ U, ∀t ∈ [0,  T]

x(0) = x0, x(T) = xs

(1)

where x0 is the initial condition and the pair (xs, us) that satisfies

lc(xs, us) = min
x,u

{lc(x, u) | f (x, u) = 0, x ∈ X, u ∈ U} (2)

is defined as the optimal static equilibrium. The constraint sets
X  ⊆ R

n, U  ⊂ R
m with X  × U  assumed compact. This optimal control

problem is at the core of model predictive control of systems where
(1) is carried out in a receding horizon manner. The cost function
lc(x(t), u(t)) here is assumed generic. The direct design approach
to solving (1) is to discretize it by the use of exact or approximate
discretization methods, and then optimize.

As stated in Section 1, dissipativity of a system with respect to
the given cost function is important in the context of e-MPC as
the stability proof of the optimal controlled system often relies on
this property. Hence, given a ‘dissipative’ continuous-time setup
that is approximately discretized, it is imperative to know if dis-
sipativity is preserved. A review of the literature on preservation
of dissipativity shows that most of the work done is on finding
supply rates for which the discretized system (controller) is pas-
sive while some viewed dissipativity preservation as preservation
of positive-realness of the system [8–11]. However, dissipativity
of the system as applied in e-MPC is with respect to a given run-
ning (stage) cost. Hence, given a continuous-time system that is
dissipative with respect to a given supply rate, we seek to find
out if this dissipativity is preserved in the discretized setup and
in cases where the explicit discretized form is not available, how
discretization affects the closed-loop system’s stability.

For analysis purpose, we consider linear systems with quadratic
running costs without restrictions on the definiteness of the cost.
The origin is taken to be the optimal static equilibrium. The use of a
linear-quadratic setup makes for ease of checking the dissipativity
condition.

Definition 1. Consider the continuous-time system

ẋ = Acx + Bcu (3)

and the running cost

lc(x, u) = xT Qcx + uT Rcu + 2xT Scu (4)

System (3) is said to be dissipative [12,13] with respect to run-
ning cost (4) if there exists a quadratic storage function, V(x) = xTPcx
where Pc = PT

c such that for all x ∈ X, u ∈ U,

ẋT Pcx + xT Pcẋ ≤ lc(x, u). (5)

This is implied by the existence of a Pc = PT
c such that the Linear

Matrix Inequality (LMI)[
AT

c Pc + PcAc − Qc PcBc − Sc

BT
c Pc − ST

c −Rc

]
≤ 0 (6)

is feasible. If (6) holds with strict inequality, the system is said to
be strictly-dissipative with respect to the running cost.

Definition 2. The discrete time system

xk+1 = Axk + Buk (7)

is said to be dissipative [14,13,5] with respect to the stage cost

ld(xk, uk) = xT
k Qxk + uT

k Ruk + 2xT
k Suk (8)

if there exists a quadratic storage function xT
k
Pdxk where Pd = PT

d
such that for all xk ∈ X, uk ∈ U  and k ≥ 0,

xT
k+1Pdxk+1 − xT

k Pdxk ≤ ld(xk, uk) (9)

This is implied by the existence of a Pd = PT
d

such that the LMI[
AT PdA − Pd − Q AT PdB − S

BT PdA − ST BT PdB − R

]
≤ 0 (10)

is feasible. If (10) holds with strict inequality, the system is said to
be strictly-dissipative.

We note that compactness of the constraint set and continu-
ity of the quadratic storage function imply lower boundedness of
the storage function, which is required for dissipativity to hold.
Hence, Pc and Pd can be non-negative, provided the storage function
remains lower bounded [4,5,15–17].

Assumption 2.1. The continuous-time system (3) is dissipative
with respect to the running cost (4).

3. Effect of sampling period on first order approximation

In this section, we  analyze the effect of the approximate discreti-
zation of optimal control problem (1) when the dynamics is linear
and the cost function is quadratic. We  note that there are estab-
lished methods of computing the exact discrete equivalent of (1)
when dealing with a linear-quadratic setup [18,19]. Hence while
one may  not necessarily use an approximate method in the linear-
quadratic case, analyzing the effect of approximate discretization
in the linear quadratic case will help understand the observed
behaviour in the generic case. We  start with the exact discreti-
zation method under the assumption of piecewise-constant inputs
and take its first order approximation. This gives an explicit form
of the discrete setup in terms of the continuous-time setup hence
analysis linking both can be easily made.

Consider the continuous-time system (3) and running cost (4).
Define

˚(t) = eAct, � (t) =
∫ t

0

eAc�Bc d�.

Given a sampling time ts > 0, let (7) and (8) in Definition 2
be obtained by the exact discretization of (3) and (4) (under
the assumption of piecewise-constant inputs i.e., zero-order-hold
(ZOH)) such that:

A = ˚(ts) = Inx + Acts + 1
2!

A2
c t2

s + 1
3!

A3
c t3

s + · · ·

B =
∫ ts

0

eActBc dt = Bcts + 1
2!

AcBct2
s + 1

3!
A2

c Bct3
s + · · ·[

Q S

ST R

]
=

∫ ts

0

[
˚T (t) 0

� T (t) Inx

]  [
Qc Sc

ST
c Rc

]  [
˚(t) � (t)

0 Inx

]
dt

(11)

where nx is the number of states. Expanding the discrete cost from
(11) in powers of ts yields the series expansion;

Q = Qcts + 1
2

(QcAc + AT
c Qc)t2

s + · · ·

R = Rcts + 1
2

(ST
c Bc + BT

c Sc)t2
s + · · ·

S = Scts + 1
2

(AT
c Sc + QcBc)t2

s + · · ·

(12)
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