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a b s t r a c t 

Use of computational fluid dynamics to model chemical process system has received much attention in 

recent years. However, even with state-of-the-art computing, it is still difficult to perform simulations 

with many physical factors taken into account. Hence, translation of such models into computationally 

easy surrogate models is necessary for successful applications of such high fidelity models to process 

design optimization, scale-up and model predictive control. In this work, the methodology, statistical 

background and past applications to chemical processes of meta-model development were reviewed. The 

objective is to help interested researchers be familiarized with the work that has been carried out and 

problems that remain to be investigated. 

© 2016 Published by Elsevier B.V. on behalf of Taiwan Institute of Chemical Engineers. 

1. Introduction 

Systematic accumulation of knowledge and drive towards op- 

timal design is the key to intelligent and rapid development of 

chemical processes and products. Traditionally this is done in two 

distinct approaches: the first-principle approach and data-driven or 

black-box approach. 

First principles, or physical approach requires scientific under- 

standings of the workings of process and integrates them into de- 

terministic input-output simulation models. Simulation models can 

be developed at different physical scales, e.g., steady state and dy- 

namic process simulations model the operation performance of a 

plant, computer fluid dynamic (CFD) simulations model the mo- 

mentum, material and heat transfer in an equipment, and molecu- 

lar simulations model the relation between molecular structure as 

input and material property as output. 

The black-box or data-driven approach rooted on the statistical 

theory of design of experiment (DOE) to direct experiments. DOE 

can be divided into two categories, the exploration of design space, 

e.g. screening designs, and finding the optimum, e.g., response sur- 

face method. Traditional DOE theory were based on the assump- 

tions that the input-output relations are relatively simple, consist- 

ing of linear, interaction, quadratic effects etc. 

With the development of powerful computers, we can include 

more and more details into first-principle simulation models so as 

to improve the fidelity of the model. For example, we can model 
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a continuous stirred tank reactor (CSTR) by assuming that it is 

a well-mix reactor. The mixing and heat transfer can be mod- 

elled using a CFD simulator and their effects can be integrated to 

the well-mix reactor through residence time distribution and heat 

transfer rate. Alternatively, one can take into account reactions and 

change in physical properties with change in composition and tem- 

perature in a CFD simulation. Even with a given simulation model, 

the fidelity can increase by including more mesh into the solver. 

As the fidelity of the physical model increases, the number of pa- 

rameters needed to be estimated, i.e. , costs of calibrating the first- 

principle model increase. However, the computer time required for 

simulation also increase and the high cost the first-principle model 

becomes difficult to use. 

This dilemma leads to a continuous effort to develop meta- 

models (models of model, or surrogate models) so that knowledge 

accumulated in such high fidelity models can be used efficiently 

in design, optimization and control. There have already been many 

useful reviews and books in the development and application of 

metamodel and design of computer experiments, a brief list is pro- 

vided here [1–8] . However, to the best of our knowledge, there 

is no such review attempt specifically from the perspective of a 

chemical process system engineer. Specifically, we shall attempt to 

address the following important issues: 

(1) model representation, 

(2) model construction and evolution, and 

(3) applications in chemical process system engineering. 
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2. Models representation 

2.1. Input–output relation 

Consider an actual process with input x = [ x 1 · · · x K x ] and output 

y = [ y 1 · · · y K y ] . 

y = �( x ) . (1) 

Let � be a high-fidelity physical model that predict an output 

y at a given set of input 

y = �( x ) . (2) 

A meta-model is any model �( x , β) that approximate this high 

fidelity model 

�( x ) = �
(
x , β

)
+ �( x ) , (3) 

with �( x ) being the error of the meta model at a specific input 

configuration. The high fidelity model �( x ) is usually a determin- 

istic first principle model. Common types of meta-models �( x , β) 

include polynomial, kriging, radial basis function and artificial neu- 

ral network, etc. The coefficients β are regression results that usu- 

ally are not susceptible to any physical interpretation. We should 

bear in mind that the definition of input x and output y may be 

different in different applications. For exam ple, let us consider the 

CFD model of a heat exchanger with fixed geometry. We can try 

to construct a meta-model that only apply to hot and cold streams 

with specific physical properties. The input parameters x are the 

inlet flowrates and temperatures of the inlet hot and cold streams. 

However, if we want to construct a more general meta-model that 

can be applied to different fluids, then physical properties such as 

viscosities and thermo-conductivities will also be classified as in- 

puts. Similarly we can define various sets of y . A simple version 

of y will be the average temperature of outlet streams. A detailed 

version of y can be the temperatures and the velocities at different 

points inside the heat exchanger. 

2.2. Types of meta-models 

2.2.1. Polynomial 

Polynomial meta-model is perhaps the simplest form of model 

presentation used in meta-modelling research. Some studies in the 

literature on this method are: Simpson et al. [9] , Palmer and Re- 

alff [10] , Dutournie et al. [11] , Chen et al. [12] . Simplicity implies 

ease in construction and application but also inability to describe 

complex input–output relationships. 

2.2.2. Kriging, Gaussian process model, and radial basis function 

The work of Krige [13] was widely used in geostatistics [14] and 

spatial statistics [15] . Kriging assumes some form of correlation be- 

tween points in the multi-dimensional input space, with the cor- 

relation being used to predict response values between observed 

points. A brief introduction to the formulation and construction of 

Kriging model [16,17] are described as follows. 

Let ˆ X = [ ̂  x 1 , . . . , ̂  x N ] 
T be a set of training data points (sites) and 

ˆ Y = [ ̂  y 1 , . . . , ̂  y N ] 
T be the corresponding response variables for de- 

velopment of a Kriging model. The prediction for a new data point, 

x is given by 

y ( x ) = f T ( x ) β + r T ( x ) �
(

ˆ X 

)−1 (
ˆ Y − F 

(
ˆ X 

)
β
)
, (4) 

where f ( x ) contains a set of regression functions of the input vari- 

ables, and β is the corresponding regression coefficients to be esti- 

mated. F ( ̂  X ) = [ f ( ̂  x 1 ) , . . . , f ( ̂  x N )) ] 
T is a matrix containing the re- 

gression functions calculated for all the training data points. 
∑ 

( ̂  X ) 

is the correlation matrix which is obtained from correlation func- 

tions evaluated at each pair of the training points: 

�
(

ˆ X 

)
= 

⎡ 

⎢ ⎣ 

ρ
(

ˆ x 1 , ̂  x 1 
)

· · · ρ
(

ˆ x 1 , ̂  x N 
)

. . . 
. . . 

. . . 

ρ
(

ˆ x N , ̂  x 1 
)

· · · ρ
(

ˆ x N , ̂  x N 
)
⎤ 

⎥ ⎦ 

. (5) 

A widely used correlation function is the Gaussian function 

ρ( x , x ′ ) = exp 
[
−( x − x ′ ) T diag [ θ1 . . . θK x ] ( x − x ′ ) 

]
, (6) 

while 

r ( x ) = 

[
ρ
(
x , ̂  x N 

)
, . . . ρ

(
x , ̂  x N 

)]
(7) 

is vector of the correlation between a general point in the input 

space and the training sites. The parameters of the Kriging model 

are the parameters in the correlation function θ = [ θ1 · · · θK x ] and 

the regression coefficient β. They can be estimated by the follow- 

ing iterative procedure. First assume a value for θ, estimate the re- 

gression coefficient β by 

˜ β = 

(
F 
(

ˆ X 

)T 
�

(
ˆ X 

)−1 
F 
(

ˆ X 

))−1 

F 
(

ˆ X 

)T 
�

(
ˆ X 

)−1 
Y . (8) 

The process variance can be calculated as 

σ 2 
p = 

1 

N 

(
Y − F 

(
ˆ X 

))T 
�

(
ˆ X 

)−1 (
Y − F 

(
ˆ X 

))
. (9) 

A new set of correlation parameters θ can be estimated by 

˜ θ = min 

θ

(∣∣�(
ˆ X 

)∣∣1 /N 
σ 2 

p 

)
The above procedure is repeated until values of ˜ θ and 

˜ β con- 

verge. 

Kriging is also termed Gaussian process in the literature with 

slightly different formulation [18–20] . 

Applications of Kriging, Gaussian process models in meta-model 

development have been extensively investigated by many authors. 

A chronological, but far from exhaustive, list is provided here 

[18,21–47] . A review was provided by Kleijin [4] in 2009. 

2.2.3. Support vector machine 

Support vector machine (SVM) [48] was originally developed as 

a supervised learning classifier so that data in a (high dimensional) 

input space can be classified into groups according to their loca- 

tions. The SVM can also be formulated into an input–output known 

as support vector regression (SVR) [49] . For a specific dimension 

in the output space, given a training data set ˆ X = [ ̂  x 1 , . . . ̂  x N ] 
T and 

[ ̂  y 1 , . . . ̂  y N ] 
T ; a nonlinear SVR can be expressed as 

y ( x ) = αo + 

N ∑ 

i =1 

(
αi − α∗

i 

)
K 

(
x, ̂  x i 

)
, (10) 

where αi , α
∗
i 

can be obtained by solving optimization problem 

max 

⎧ ⎪ ⎨ 

⎪ ⎩ 

− 1 
2 

N ∑ 

n =1 

N ∑ 

n ′ =1 

[
( αn − α∗

n ) 
(
αn ′ − α∗

n ′ 
)
K 

(
ˆ x n , ̂  x n ′ 

)]
+ ε 

N ∑ 

n =1 

( αn + α∗
n ) + 

m ∑ 

n =1 

ˆ y n ( αn − α∗
n ) 

⎫ ⎪ ⎬ 

⎪ ⎭ 

, 

subject to: 

{ 

N ∑ 

n =1 

( αn − α∗
n ) = 0 , 

0 < αn , α∗
n < C. 

(11) 

The off-set parameter αo , tolerance parameter ε and constraint 

parameter C are parameters to be chosen in training [50] . The solu- 

tion of the above problem can be determined using a least square 

approach that uniquely determined by the input–output training 

data; the resulting model is known as known as least square sup- 

port vector machine (LS–SVM) [51] . Several reports of using SVR in 

meta-modelling are given here [52–56] . 
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