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1. Introduction
In this paper, we consider the following two-dimensional

acoustic wave equation:
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where u is the wave displacement, v is the sound velocity,
and f is an external source. A Mur’s first-order absorbing
boundary condition (ABC) is considered.
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The conventional finite difference scheme (FDS) works
efficiently for solving the acoustic wave problems [1–3].
However, the FDS is an explicit time-marching algorithm,
which means its time step should be limited by the Courant-
Friedrichs-Levy (CFL) condition. Since time step size
strongly depends on the smallest cell in a computational
area, the FDS costs much time to solve acoustic wave
problems with fine structures. Hence, to overcome the conflict
in the calculative stability of the FDS, some unconditionally
stable schemes [4–6] containing the alternating direction
implicit (ADI) difference scheme have been proposed. Huang
et al. [7] and Fu et al. [8] proposed a new orthogonal
decomposition scheme using the associated Hermite poly-
nomials to eliminate the CFL stability condition (AH-FDS).
However, the AH-FDS has the drawback of a need for large
internal storage and heavy computation.

In this work, we proposed a new unconditionally stable
scheme for the acoustic wave equation using the weighted
Laguerre polynomials and finite difference scheme (WLP-
FDS). First, the time derivatives in the wave equation are
expanded by the Laguerre polynomials and weighting
functions. Since these orthogonal polynomials converge to
zero with time, the sound field expanded by the weighted
Laguerre polynomials converges to zero simultaneously.
Then, by applying Galerkin’s method and using the orthog-
onal property of weighted Laguerre basis functions, we can
eliminate the time variables and thus obtain an uncondition-

ally stable scheme from the computations. Finally, we can
solve the implicit equation recursively and reconstruct
numerical results using the expansion coefficients.

2. Formulations and WLP-FDS
Consider the Laguerre polynomials defined by
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The Laguerre polynomials have a recursive and simple
relationship given by

L0ðtÞ ¼ 1

L1ðtÞ ¼ 1� t

nLnðtÞ ¼ ð2n� 1� tÞLn�1ðtÞ � ðn� 1ÞLn�2ðtÞ
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These polynomials are orthogonal with respect to the
weighting function e�t.Z 1
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Then, a set of orthogonal functions f�0; �1; �2; � � �g can be
obtained by

�nðs � tÞ ¼ e�s�t=2Lnðs � tÞ; ð6Þ

where s > 0 is a time scale factor. Note that the functions are
convergent to zero absolutely as t!1. Then, the arbitrary
functions spanned by the above functions are convergent to
zero absolutely as t!1. The above basis functions are
orthogonal with respect to the scaled time �t asZ 1
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where �t ¼ st is a scaled time variable. We introduce an
appropriate scale factor to use the basis functions properly.
The partial differential with respect to x and y can be obtained
by using the above basis functions.
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From [9], we obtain the first derivative of uðx; y; tÞ versus time
t as
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From Eq. (9), we can conclude that the second derivative of
uðx; y; tÞ with respect to time t is
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Inserting Eqs. (8) and (10) into the acoustic wave
equation, we can obtain
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To eliminate the time terms �nð�tÞ, Galerkin’s method is
applied to the above equation using the orthogonal property of
weighted Laguerre basis functions. We multiply both sides of
Eq. (11) by �pð�tÞ, and then, by integrating over time from 0 to
1, we can obtain the following equation using Eq. (7):
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In Eq. (13), Tf is a finite time interval. Rewriting Eq. (12)
using the finite difference scheme in space, we obtain
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where �xi and �yj denote the spatial size in the x- and
y-directions, respectively. From Eq. (14), we can see that each
order of a field variable is related to the adjacent four field
variables. Rewriting Eq. (14), we have
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Rewriting Eq. (15) in a matrix form, we can obtain

½A�fupg ¼ f f pg � fðp� kÞ�p�1g: ð16Þ

In Eq. (16), ½A� is a five-diagonal matrix and its shape is
shown in Fig. 1. In ½A�, the values in central line are the
coefficients of upðx; yÞji; j in Eq. (15). f f pg is the term of the
external source due to Eq. (13). f�p�1g is the accumulation
term from order zero to order p� 1.

For the boundary conditions, inserting Eq. (9) into
Eq. (2), the time derivative can be eliminated using Eq. (7).
At x ¼ X, we can obtain
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Using the central difference scheme and the averaging
technique, we can obtain
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Combining Eqs. (17) and (18), we have
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Similarly, we can obtain the ABC difference equation at
x ¼ 0, y ¼ 0, and y ¼ Y as follows:
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Fig. 1 Five-diagonal sparse matrix ½A�.
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