Contents lists available at ScienceDirect

Journal of the Taiwan Institute of Chemical Engineers

journal homepage: www.elsevier.com/locate/jtice

Nanofluid flow through a porous space with convective conditions and heterogeneous–homogeneous reactions

T. Hayat a,b, Zakir Hussain a,*, A. Alsaedi b, M. Mustafa c

- ^a Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000, Pakistan
- b Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80257, Jeddah 21589, Saudi Arabia
- ^c School of Natural Sciences, National University of Science and Technology, Islamabad 44000, Pakistan

ARTICLE INFO

Article history: Received 6 March 2016 Revised 22 October 2016 Accepted 2 November 2016 Available online 18 November 2016

Keywords: Heterogeneous-homogeneous reaction Carbon nanotubes Porous medium Convective condition

ABSTRACT

Present analysis deals with the nanofluid flow due to a cylinder. Heat transfer mechanism is inspected under the physically acceptable convective type conditions. A simple isothermal model of homogeneousheterogeneous reactions is used to regulate the solute concentration. Thermodynamics processes of homogeneous-heterogeneous reactions analyze the effect of temperature phase changes, such as convection or evaporation. It is assumed that the base fluid (water) is essentially composed of single and multi walled carbon nanotubes. Uniformly valid convergent series expressions are obtained with the help of optimal homotopic approach. Impacts of embedded flow parameters are visualized through graphical illustrations. Fluid velocity displays decreasing trend near the cylinder as the curvature parameter is incremented. Interestingly, such result is not preserved far from the cylinder. The simulations predict that wall heat flux is inversely proportional to both curvature parameter and the convecting heating strength. However, value of heat flux is predicted to be larger in case of larger volume fraction of carbon nanotubes. Moreover heat transfer coefficient is more in single wall carbon nanotubes (SWCNTs) when compared with multi wall carbon nanotubes (MWCNTs). Heterogeneous and homogeneous reactions have opposite behaviors on nanoparticle concentration distribution. Drag coefficient at the cylinder enhances when larger curvature parameter is accounted. Comparison of present study with previous published work is given. The results are found in good agreement.

© 2016 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

1. Introduction

It is known that nanofluids can overcome the issues associated with several materials of low thermal conductivity such as ethylene glycol, water, oil etc. Nanofluids consist of colloidal suspensions of nanoscale materials in liquid carrier. Nanofluids have fascinating applications in thermal engineering, heat exchangers, chemical processes, electronic devices, cancer therapy, bio medicine etc. Nanofluids are smart coolants which possess exceptional thermal performance at low particle concentrations. Researchers have shown that effective thermal conductivity for nanofluids is measurably elevated and hence potential applications of nanofluids to micro scale heat transfer are obvious. Especially, two phase flow problems have key role petroleum industries, waste water treatment, combustion and smoke emission from automobiles [1–5]. Choi [6] firstly used the terminology of nanofluids

E-mail address: zakir.qamar@yahoo.com (Z. Hussain).

when he observed an anomalous rise thermal conductivity by filling water with copper nanoparticles. Solar energy is globally recognized as easily accessible as well as pollution free source of renewable energy. A device that converts solar radiation into heat energy is the solar collector. It has been demonstrated that replacement of water with nanofluid boosts the efficiency of these collectors [7]. The improved cooling capability of nanofluids is expected to meet the growing challenges of heat transfer in applications involving microchips in computer processors, hybrid-powered engines, refrigeration/air-conditioning, diesel engine oil etc. Rashidi et al. [8] carried out entropy generation analysis for nanofluid flow near a rotating disk with uniform suction. Sheikholeslami et al. [9] considered thermal energy transport in nanofluid flow across a porous stretchable wall. Bhattacharyya et al. [10] presented numerical approximations for nanofluid flow due to exponential shrinking surface. Free convection effect in nanofluid is reported by Sheikholeslami et al. [11] using two-phase model. Imtiaz et al. [12] discussed the effects of boundary slip on nanofluid flow subject to on-linear radiation. Turkyilmazoglu [13] addressed the time-dependent flow of nanofluid due to impulsive motion of

^{*} Corresponding author.

vertical flat plate. Shehzad et al. [14] examined the flow of Jeffrey fluid containing nanoparticles using convective type conditions. Kameswaran et al. [15] examined the convective/radiative heat transfer for nanofluid flow past a permeable surface via convective conditions. Zheng et al. [16] analyzed the nanofluid flow in the regimes of variable heat flux and chemically reactive species. Magnetic field influence on buoyancy driven flow of CuO-water nanofluid in a cavity was presented by Sheikholeslami et al. [17]. Application of time-varying magnetic force on nanofluid flow confined between parallel flat surfaces was studied by Sheikholeslami et al. [18]. Onset of free convection in nanofluid flow through an eccentric semi annulus was described by Shekholeslami et al. [19]. Zeeshan et al. [20] studied the ferrofluid flow by a stretchable surface. Nanofluid flow comprising carbon nanotubes over a nonlinearly deforming surface with variable thickness was reported by Hayat et al. [21]. Three dimensional natural convection of nanofluid has been studied by Sheikholeslami and Ellahi [22]. Hayat et al. [23] addressed nanofluid flow past a non-linearly deforming surface with chemically reactive species. Akbarzadeh et al. [24] investigated thermal and pumping power effects on nanofluid flow through a wavy channel. Hayat et al. [25] addressed nanofluid flow under the influence of homogeneous-heterogeneous reactions and melting heat transfer with CNTs. Sheikholesami et al. [26] analyzed radiative flow of nanofluid. Ellahi et al. [27] examined buoyancy effects on laminar flow of Al₂O₃-water nanofluid by a porous wedge. Ellahi et al. [28] addressed mixed convection flow of nanofluid by a permeable stretching sheet. Sheikholeslami et al. [29] addressed the buoyancy induced flow of nanofluid in threedimensions. Sheikholeslami et al. [30] also considered two-phase model to examine energy transfer in magneto-nanofluid. Temperature variation and heat flux at the sheet are considered in numerous studies. Convective condition has been given little attention in the past in spite of its wide utilization in processes related to nuclear plants, material drying, thermal energy storage and others. Buoyancy effects on nanofluid flow driven by a power-law deforming surface were examined by Waqas et al. [31]. Hall effects on peristaltic motion of Carreau-Yasuda fluid with radially varying magnetic force and convective condition were analyzed by Hayat et al. [32]. Buoyancy assisting flow of Casson nanofluid driven by convectively heated boundary was explored by Rauf et al. [33]. Hayat et al. [34] examined the MHD flow of Sisko nanofluid induced by a convectively heated wall. Oyelakin et al. [35] reported effects of thermal radiation, convective and slip conditions on unsteady flow of Casson nanofluid near a deforming surface.

The natural processes of chemical reactions connect mutually with homogeneous and heterogeneous reactions. A number of the reactions progress gradually or instantly in absence of a catalyst. The relations between the homogeneous and heterogeneous reactions are very composite. Hayat et al. [36] investigated chemical reaction effects on three dimensional flow of couple stress fluid due to unsteady deforming sheet. Rashidi et al. [37] studied mixed convective heat/mass transfer in chemically reactive flow across a horizontal surface. Bhattacharyya [38] analyzed the aspect of chemical reaction for laminar flow past a shrinking boundary. Merkin et al. [39] analyzed homogeneous—heterogeneous reactions in boundary-layer flow governed by a simple isothermal model.

Our main interest here is to discuss the heterogeneous-homogeneous chemical reaction for nanofluid flow past a stretching cylinder. The behavior of base fluid with single and multi-wall carbon nanotubes observed. Convective boundary conditions are employed to inspect the heat transfer. Optimal Homotopy Analysis (OHAM) approach [40–49] is utilized to achieve the convergent series solutions of momentum, energy and concentration equations. Skin friction coefficient and Nusselt number corresponding to various physical parameters are calculated and analyzed graphically.

Nomenclature thermal conductivity of fluid characteristics length k_{CNT} thermal conductivity of carbon nanotubes A, B chemical species D_A , D_B Diffusion coefficients of chemical species f dimensionless stream function T_f temperature of hot fluid Ċf skin friction coefficient surface heat flux q_w Rez local Reynolds number curvature parameter auxiliary parameters k* permeability of porous medium U_0 reference velocity Sc Schmidt number Ks heterogeneous reaction parameter ratio of diffusion coefficients OHAM optimal homotopy analysis method **MWCNT** multi wall carbon nanotube Greek symbols dynamic viscosity of fluid μ_f kinematic viscosity of fluid $(c_p)_{nf}$ specific heat at constant pressure of nanofluid kinematic viscosity of nanofluid v_{nf} specific heat at constant pressure of carbon nan- $(c_p)_{CNT}$ otubes density of nanofluid ρ_{nf} dimensionless temperature similarity variable η k_{nf} thermal conductivity of nanofluid heat transfer coefficient a, b concentrations of chemical species A, B, respectively k_s , k_r rate constants Τ temperature of fluid T_{∞} ambient temperature of fluid local Nusselt number Nu_z surface shear stress τ_w R radius of cylinder velocity components in r- and z- directions, reu. w spectively cylindrical coordinates along the surface and normal r, z to it respectively velocity of stretching cylinder w_e k_1 porous medium parameter Pr Prandtl number for base fluid water Κ homogeneous reaction parameter

 B_i Biot number SWCNT single wall carbon nanotube CNT carbon nanotube

 ρ_f density of fluid

 $\begin{array}{lll} c_p & \text{specific heat at constant pressure} \\ \mu_{\text{nf}} & \text{dynamic viscosity of nanofluid} \\ \alpha_{nf} & \text{thermal diffusivity of nanofluid} \\ (\rho)_{CNT} & \text{density of carbon nanotubes} \\ \phi & \text{volume fraction of nanoparticle} \\ \phi & \text{dimensionless concentration} \end{array}$

We have employed the well-known Tiwari and Das model for investigation of thermal energy transport in nanofluids. It should be emphasized that particle size, volume fraction, thermal conductivity and temperature contribute to the improved thermal behavior of nanofluids. Besides this, Brownian motion and

Download English Version:

https://daneshyari.com/en/article/4998891

Download Persian Version:

https://daneshyari.com/article/4998891

<u>Daneshyari.com</u>