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a b s t r a c t 

This paper proposes an adaptive multi-state partial least squares (MSPLS) algorithm for multivariate 

chemical processes over a wide range of operating conditions. In the proposed algorithm, the state vari- 

able with the maximum variation is first selected from the defined key variables. The system is then 

divided into several states according to the rank of this state variable. The deviation is subtracted from 

the process variables in each state, resulting in a set of unified process variables that are then combined 

to form the PLS model. Finally, an adaptive scheme is designed to generalize the performance of MSPLS. 

Applications to a continuous stirred tank reactor and a real industrial process are used to evaluate the 

proposed algorithm. 

© 2016 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved. 

1. Introduction 

In industrial processes, some response variables cannot be mea- 

sured online, or can only be measured at very low frequencies. 

However, these variables are essential for monitoring and timely 

control. Consequently, inferential models ( i.e. , soft sensors) devel- 

oped using knowledge-based or data-driven strategies have been 

designed to predict these unmeasurable response variables [1,2] . 

Over recent decades, soft sensors have been widely used in many 

industrial processes involving petrochemicals, fermentation, and 

polymers [3–6] . 

Knowledge-based strategies can describe plant behavior under 

all operating conditions [7] . However, it is difficult to compute the 

exact model parameters, because some a priori physical knowledge 

and the chemical background are required [8] . Furthermore, the 

calculation of such parameters is time-consuming [9] . 

Concomitant with developments in computer science and mea- 

surement techniques, the collection and storage of operating data 

are more convenient than ever before. Accumulated historical 

records contain a wealth of useful information, facilitating the con- 

struction of inferential models using data-driven methods, e.g. , ar- 

tificial neural networks (ANNs), support vector machines (SVMs), 

multiple linear regression (MLR), principal component regression 

(PCR), and partial least squares (PLS) regression [10–13] . 

An ANN model is a type of universal function approximator 

based on the empirical risk minimization (ERM) principle. ANNs 
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can approximate any nonlinear function with an appropriate num- 

ber of nodes and hidden layers [14] . Unfortunately, the optimal 

topology of the network is usually unknown, and over-fitting is a 

serious problem in ANNs [15] . Furthermore, ANNs are prone to be- 

coming stuck in local optima during the learning phase [16] . Unlike 

ANNs, SVMs utilize the structural risk minimization (SRM) prin- 

ciple, which balances the quality of the learning data against the 

complexity of the approximating function [17] . However, the train- 

ing complexity of SVMs is increased by a large dataset. Although 

some fast training algorithms have been presented to overcome 

this issue, the user should choose a suitable optimization strategy 

in accordance with specific conditions [18] . 

Traditional MLR techniques such as the least squares (LS) 

approach are basic regression models. These may suffer from 

numerical problems when the process variables are strongly 

collinear [19] . PCR/PLS models overcome this issue by projecting 

the multidimensional space of the original process variables onto 

a subspace. The resulting projection is defined by the orthogonal 

principal components (PCs) or latent variables (LVs) [20] . However, 

PCR obtains the PCs without any reference to the response vari- 

ables. As a result, the derived PCs, which explain a considerable 

amount of the variation in the process variables, may not be re- 

lated to the variation of the response variables [21,22] . In contrast 

to PCR, PLS simultaneously decomposes the process variables and 

response variables with constrained LVs. These LVs contain the 

maximum variation and correlation between the process variables 

and response variables. 

However, the accuracy of traditional PLS may be degraded 

when new online process information is introduced, because the 
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PLS model is built offline using historical data, and thus cannot 

handle these new data. To rectify this problem, recursive partial 

least squares (RPLS) regression was developed [23,24] . RPLS algo- 

rithms recursively update the PLS model without increasing the 

size of the data matrices, thereby avoiding the need to store large 

amounts of numerical data and perform computationally expensive 

mathematical operations. 

PLS is usually based on a global predictive model with the 

aim of achieving a universal generalization performance. For mul- 

tiple operating regimes, process variables often need to vary over 

a wide range to cover the diverse range of products [25] . The 

change across entire operating regimes is greater than the vari- 

ation in one region, which may lead to inaccurate predictions in 

some local regions where the process characteristics have changed 

[26] . Using divide-and-conquer techniques, local modeling meth- 

ods such as multiple models and just-in-time learning (JITL) have 

been proposed to deal with this issue [26,27] . However, the com- 

putational burden of JITL and the lack of adaptive schemes for 

multiple models mean that local modeling methods are defec- 

tively used with multiple operating regime systems [28,29] . Conse- 

quently, this paper proposes a soft sensor based on multi-state par- 

tial least squares (MSPLS) regression, and discusses its adaptability. 

The remainder of this paper is organized as follows. 

Section 2 gives a brief overview of the PLS model. Section 3 de- 

scribes the determination of mean metrics for search deviations 

and the adaptive MSPLS modeling procedure. Section 4 applies the 

model to a simulated continuous stirred tank reactor ( Section 4.1 ) 

and a real industrial process ( Section 4.2 ). Finally, Section 5 con- 

cludes this paper. 

2. Partial least squares model 

Consider a pair of datasets X ∈ R K × N and Y ∈ R K × L , where X , 

Y are the process and response variables, respectively, and X̄ and Ȳ 

(zero mean and unit variance) are the centered and scaled forms of 

X , Y . The traditional PLS model projects X̄ , Ȳ onto subset LVs that 

are defined by an input score matrix T and an output score matrix 

U : ⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

X̄ = 

a ∑ 

j=1 

t j p 
′ 
j + E a = T P ′ + E a 

Ȳ = 

a ∑ 

j=1 

u j q 
′ 
j + F a = UQ 

′ + F a 

(1) 

where T = [ t 1 , t 2 , . . . , t a ] (unit length), P = [ p 1 , p 2 , . . . , p a ] and Q = 

[ q 1 , q 2 , . . . , q a ] are the loading matrices of X and Y . E , F represent 

residual matrices. Eq. (1) contains bilinear terms that represent the 

outer model of X̄ and Ȳ . These terms require a connection known 

as the inner model between T and U : 

ˆ U = BT (2) 

b i = 

u 

′ 
i 
t i 

t ′ 
i 
t i 

i = 1 , . . . , a (3) 

where B = diag [ b 1 , b 2 , . . . , b a ] is the linear model assumed to relate 

T and U . Thus, the PLS model is built, and the prediction of Ȳ is 

given by 

ˆ Ȳ = BT Q 

′ = B ̄X W 

(
P ′ W 

)−1 
Q 

′ (4) 

The total number of LVs in the PLS model is N , but it is not 

necessary for all N to contribute to the estimated output. Several 

methods can be used to determine the ideal number of LVs for re- 

gression. One such method is to choose the number of LVs present 

when ‖ F a −1 ‖ − ‖ F a ‖ falls below a certain threshold [21] . Another is 

k -fold cross-validation, in which the optimal number of LVs can be 

chosen with the minimum predicted error sum of squares (PRESS) 

[30] . 

3. Adaptive multi-state partial least squares method 

The proposed adaptive MSPLS algorithm is used for multiple 

operating regime systems, in which some process variables may 

change over a wider range than others to cooperate with different 

regime operations. The basic idea underlying the adaptive MSPLS 

algorithm is to use the deviation matrices { � 

X , 
� 

Y } through { X , Y } 

to build an adaptive PLS model. Unlike the PLS/RPLS models, the 

MSPLS algorithm eliminates the differences among multiple op- 

erating regimes (multi-states). First, the mean of the operating 

regime is subtracted from the samples in each operating regime 

(centered). The centered samples are then combined, and a PLS 

model is constructed. The crucial step in MSPLS is to obtain the 

mean matrices. This proceeds as follows: 

(1) select a process variable as a basis state for dividing the op- 

erating regimes; 

(2) classify samples according to the selected process variable; 

(3) calculate mean metrics using these classified samples. 

In general, a process variable either maintains a constant level 

or changes dynamically. Further, the variance can always account 

for the change in the response variable. Thus, this process variable 

is called the state variable x s , which is determined as 

x s = arg max 
x i 

( var ( x i ) ) i = 1 , . . . , N (5) 

The number of states ‘ M ’ can be defined based on the distri- 

bution of x s . Further, the state number divides x s into ‘ M ’ equal 

segments called the state span ( D ): 

D = 

max ( x s ) − min ( x s ) 

M 

(6) 

where max ( x s ) and min ( x s ) are the maximum and minimum of x s . 

Accordingly, the respective bounds of each state are ξ l 
j 
, ξ h 

j 
: {

ξ l 
j 
= min ( x s ) + ( j − 1 ) × D 

ξ h 
j 

= ξ l 
j 
+ D 

j = 1 , . . . , M (7) 

The state classification of sample k , i.e. , x s ( k = 1 , . . . , K ) , is then 

defined as if x s ∈ ( ξ l 
j 
, ξ h 

j 
) , x s ∈ j th state. Following the classification 

of the samples, the mean of each state is calculated as: ⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

˜ x j = 

(
X 

′ Se j 

n j 

)′ 

˜ y j = 

(
Y ′ Se j 

n j 

)′ j = 1 , . . . , M (8) 

where e j ∈ R M × 1 is the unit norm vector of zeros except for the 

j th element, and S is the membership matrix: 

S = 

⎡ 

⎢ ⎢ ⎣ 

S 11 S 12 · · · S 1 M 

S 21 S 22 · · · S 2 M 

. . . 
. . . 

. . . 
. . . 

S K1 S K2 · · · S KM 

⎤ 

⎥ ⎥ ⎦ 

(9) 

S k j = 

{
1 x k ∈ j th state 

0 x k / ∈ j th state 
(10) 

where k = 1 , . . . , K, j = 1 , . . . , M. It is obvious that X 

′ S and Y ′ S rep- 

resent the sums of the samples under different states, and e j can 

eliminate other sums in addition to the j th state. The obtained 

means are arranged into mean matrices: 

˜ X = 

⎡ 

⎣ 

˜ x 1 
. . . 

˜ x M 

⎤ 

⎦ , ̃  Y = 

⎡ 

⎣ 

˜ y 1 
. . . 

˜ y M 

⎤ 

⎦ (11) 
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