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Abstract

This work is the second of a two-part investigation into the use of discontinuous Galerkin methods for obtaining approximate solu-
tions to problems of classical and gradient plasticity. Part I [J.K. Djoko, F. Ebobisse, A.T. McBride, B.D. Reddy, A discontinuous
Galerkin formulation for classical and gradient plasticity. Part 1: Formulation and analysis, Comput. Methods Appl. Mech. Engrg.,
196 (2007) 3881–3897] presented the formulation and analysis of such problems. This part focusses on algorithmic and computational
aspects of the problem. In particular, it is shown that the predictor–corrector algorithms of classical plasticity are readily extended to the
case of gradient plasticity, and to discontinuous Galerkin formulations. Conditions for convergence of the algorithms are presented, for
the elastic, secant, and consistent tangent predictors. The form of the consistent tangent modulus is established for the case of gradient
plasticity. A selection of numerical examples is presented and discussed with a view to illustrating aspects of the approximation scheme
and algorithms, as well as features of the model of gradient plasticity adopted here.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

This work constitutes the second in a two-part contribu-
tion which addresses a range of issues arising in the numer-
ical analysis and computation of problems in gradient
plasticity. In [1] (hereafter referred to as Part 1), the well-
posedness and convergence of semi- and fully -discrete
approximations have been established for a model of gradi-
ent plasticity in which the hardening term in the yield func-
tion includes both the equivalent plastic strain as a
hardening parameter, as well as its Laplacian (see Part 1
for a discussion of the relevant literature). Spatial approx-
imations are carried out using a discontinuous Galerkin
(DG) formulation in which, most generally, both the dis-

placement and hardening parameter are approximated by
piecewise-discontinuous finite element basis functions.

Various approaches have hitherto been used in numeri-
cal treatments of problems in gradient plasticity. Lasry and
Belytschko [2] used a C1 finite element formulation in a
gradient theory for one-dimensional rod and spherically
symmetric problems, the gradient term serving to regularise
the problem and in so doing to overcome problems associ-
ated with softening. De Borst and Mühlhaus [3] derived a
weak form of the gradient plasticity formulation proposed
by Mühlhaus and Aifantis [4] as well as the resulting finite
element framework, and used C1 continuous interpolants
of the hardening parameter to accommodate the higher-
order gradient terms. Pamin and de Borst [5,6] solved the
gradient enhanced problem proposed in [3] by using both
C1 and C0 elements with a penalty constraint. Related
work, also using a conforming approximation, is that of
Liebe and Steinmann [7]. De Borst et al. [8] extended their
earlier work to include gradient damage within a gradient
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plasticity formulation. Other contributions concerned with
gradient damage include the investigation by Wells et al.,
[9] while Garikipati et al. [10] have explored a variational
multiscale approach to a model of gradient plasticity pro-
posed by Fleck and Hutchinson [11].

Various researchers have considered the extension of the
gradient plasticity model in [4] to finite strains (see, for
example, [12–14]). Other key contributions to the numeri-
cal simulation of problems of gradient plasticity include
those of [15–22], amongst others.

As Part 1 makes clear, the goal of the present study is
that of developing, analysing and implementing a DG
approach to the solution of a class of plane problems in
gradient plasticity. To begin with, it is essential that the
appropriate variational formulation be constructed, and
that conditions for existence and uniqueness of solutions
be established. This has been carried out in Part 1. Further-
more, in that work it is shown that DG approximations are
stable and convergent even in softening situations, for suf-
ficiently large values of the constant in the term involving
the Laplacian in the yield function.

In this work, key questions pertaining to the numerical
implementation of the discrete model analysed in Part 1
are addressed. After a summary of the relevant equations
is presented in Section 2, the predictor–corrector solution
algorithm for this class of problems is formulated, and con-
ditions for the convergence of the algorithm given, in Sec-
tion 3. The framework in which the algorithm is
formulated is that corresponding to the primal problem,
which has been analysed in Part 1, and which is character-
ised by the flow law being written in terms of the dissipa-
tion function. The algorithms proposed here are direct
extensions of those pioneered by Martin and developed
in a series of papers [23–26]. The equivalence between these
algorithms and those based on the flow law written as a
normality condition has been established in [27,28]; in par-
ticular, the various predictors are recovered by an appro-
priate quadratic approximation of the non-differentiable
but positively homogeneous dissipation function. A
detailed treatment of these algorithmic considerations,
together with proofs of convergence, are given in [29].

Conditions for the convergence of the algorithms are
established first in the general context of an abstract prob-
lem, and then, as particular cases, for the elastic, secant and
consistent tangent predictors. In the last case it is known
[29] that it is not possible to establish conditions for uncon-
ditional convergence; this problem is overcome by intro-
ducing a perturbation of the approximation to the
tangent involving a positive multiple of the identity.

Section 4 is taken up with implementational issues, and
in particular with the construction of the algorithmic con-
sistent tangent modulus. The approach taken in its deriva-
tion borrows from that for the classical theory (see for
example [30]), though the derivation is more complex given
the non-local nature of the problem for the hardening
parameter. In addition to the tangent modulus, full details
are given of the implementational aspects of the algorithm.

In Section 5 the features and performance of the algo-
rithm are illustrated through a number of numerical exam-
ples. These address issues such as the role of softening and
size dependence, and the performance of the algorithm
using different moduli in the predictor step.

2. Governing equations

We are concerned with the behaviour of a body that
occupies a bounded Lipschitz domain X in R2, and which
undergoes small deformations. Quasi-static behaviour is
assumed, so that the equation governing motion of the
body is the equation of equilibrium. Elastic behaviour is
specified through Hooke’s law. The von Mises yield condi-
tion with linear isotropic hardening or softening is assumed
to be valid, so that the space of admissible stresses r and
conjugate generalised stresses g is given by

uðr; gÞ ¼ jsj þ g � j 6 0: ð1Þ
Here j is a constant related to the initial yield stress in uni-
axial tension, s is the stress deviator, and g is given in terms
of the scalar hardening parameter c by

gðcÞ ¼
�k2c for classical plasticity;

�k2cþ k3r2c for gradient plasticity;

�
ð2Þ

where k2 > 0 defines isotropic hardening, k2 = 0 for perfect
plasticity, and k2 < 0 corresponds to softening behaviour.
The flow law for the plastic strain rate _p and hardening
parameter rate _c then takes the alternative forms

_p ¼ K
ou
or
;

_c ¼ K;

K P 0; u 6 0; Ku ¼ 0;

ð3Þ

or

Dðq; gÞP Dð _p; _cÞ þ rðu; pÞ : ðq� _pÞ þ gðcÞðg� _cÞ ð4Þ
for arbitrary plastic strains q and hardening variables g, the
stress being given by

rðu; pÞ ¼ Cð�ðuÞ � pÞ; ð5Þ
where C is the elasticity tensor and �(u) is the infinitesimal
strain. We will make use of the latter version, known as the
primal form of the flow law [29], in which the dissipation
function D is given by

Dðq; gÞ ¼
jjqj if jqj 6 g;

þ1 otherwise:

�
ð6Þ

We note from (3) that

K ¼ _c ¼ j _pj: ð7Þ
The boundary conditions are assumed for simplicity to be
given by

u ¼ 0 and c ¼ 0 on oX; ð8Þ
the second condition being required only for the case of
gradient plasticity. Furthermore, the initial conditions are
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