ARTICLE IN PRESS

[m5G;September 14, 2016;4:40]

Journal of the Taiwan Institute of Chemical Engineers 000 (2016) 1-11

Contents lists available at ScienceDirect

Journal of the Taiwan Institute of Chemical Engineers

journal homepage: www.elsevier.com/locate/jtice

Enhanced hydrodynamics in a novel external-loop airlift reactor with self-agitated impellers

Nataša Lj. Lukić*, Ivana M. Šijački, Predrag S. Kojić, Svetlana S. Popović, Miodrag N. Tekić, Dragan Lj. Petrović

Department of Chemical Engineering, Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1 21000 Novi Sad, Serbia

ARTICLE INFO

Article history: Received 21 March 2016 Revised 31 August 2016 Accepted 5 September 2016 Available online xxx

Keywords: Impellers Self-agitated External-loop airlift Hydrodynamics Non-Newtonian Alcohol

ABSTRACT

In the present work, self-agitated impellers, as a novel type of internals, have been proposed for improving hydrodynamic and mass transfer characteristics of external-loop airlift reactors. The influence of inserted self-agitated impellers, in the riser section, in various liquid phases and with different sparger types, on main hydrodynamic parameters, was studied. The results show that the insertion of impellers led to significant bubble breakage and decrease in mean bubble size, particularly in pseudoplastic liquid. Obtained riser gas holdup values were up to 47% higher, in comparison to the configuration without impellers. Higher improvements were obtained with single orifice, given that this is the least effective gas distributor. Even though impellers represent an obstacle to the flow, relatively low reduction (about 10%) in downcomer liquid velocity was observed, for all investigated cases. Having this in mind, the benefit of inserting self-agitated impellers for improving the performance of external-loop airlift reactors was apparent.

© 2016 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

1. Introduction

As a result of simple construction without moving parts, low shear rate, good mixing and low energy requirements, externalloop airlift reactors (EL-ALR) are extensively employed in many biochemical and pharmaceutical applications. Their performance is notably affected by complex interrelationships between hydrodynamic parameters, transport phenomena, design and operating variables, microbial survival and production kinetics [1,2]. One of the key factors in determining their productivity is the gas-liquid mass transfer. Improved mass transfer and thereby higher productivity are achieved by increasing either the specific gas-liquid interfacial area, a, or mass transfer coefficient, k_L . Smaller bubble diameter, higher and more uniform radial holdup profiles initiate an increase in the interfacial area and hence the more intimate contact between phases is achieved [3]. Intensified turbulence promotes higher mass transfer by increasing mass transfer coefficient, destabilizing large bubbles and increasing surface renewal frequency of bubbles [4]. Nevertheless, with an increase in liquid velocity rates, the residence time of the gas phase shortens and thus a decrease in the gas holdup is obtained. Because of the important influence of hydrodynamics on mass transfer rate, detailed characterization of hydrodynamic parameters, such as gas

* Corresponding author: Fax +381 21 450413. *E-mail address:* nlukic@tf.uns.ac.rs (N.Lj. Lukić). holdup, liquid velocity rate and bubble behavior, is fundamental for the assessment of EL-ALR operation.

Hydrodynamics and mass transfer in EL-ALRs are largely affected by liquid phase properties, such as rheological behavior and surface tension, and sparger design. Most of the commercial fermentation processes involve viscous non-Newtonian media thus instigating numerous studies, regarding their behavior in EL-ALRs. Carboxymethylcellulose (CMC) is mainly employed as a model fluid because it has properties that highly resemble fermentation media. The effect of CMC on hydrodynamics is greatly dependent upon the apparent viscosity of the solution. Wu et al. [5] observed that in CMC solutions with lower viscosities bubble coalescence was prevented. As a result, higher riser gas holdup values were achieved. However, in highly viscous CMC solutions very large irregularshaped and spherical-cap bubbles, with high rise velocities, are accompanied by very small bubbles [6]. Since larger bubbles have higher rise velocities, lower gas holdup values are obtained. Considering that an increase in mean diameter of the bubbles reduces a, whereas k_L decreases because of lower diffusivity, mass transfer is highly diminished in viscous non-Newtonian liquids [7]. In some fermentation applications non-coalescing media are involved. Alcohols, as surface active liquids, supress bubble coalescence and thus have a huge impact on hydrodynamics and mass transfer characteristics and hence, are used to simulate the behavior of non-coalescing media. The addition of small amounts of aliphatic alcohols decreases the mean size of bubbles and reduces bubble

http://dx.doi.org/10.1016/j.jtice.2016.09.003

1876-1070/© 2016 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

Please cite this article as: N.Lj. Lukić et al., Enhanced hydrodynamics in a novel external-loop airlift reactor with self-agitated impellers, Journal of the Taiwan Institute of Chemical Engineers (2016), http://dx.doi.org/10.1016/j.jtice.2016.09.003

3-18% ī

N.Lj. Lukić et al./Journal of the Taiwan Institute of Chemical Engineers 000 (2016) 1-11

Nomencla	ature	I							
Notation			'R ‡	I-76%	1010	-24%	22	3-37%	
Α	cross-sectional area, m ²		LV	54	IC	- - -	-	23	I I
а	specific gas-liquid interfacial area, 1/m			%					
D	diameter, m		-	-130	d L C	žCC.	5%		
d_b	bubble diameter, m		ΗI	- 20-	1.5	- 17 -	5-1	ī	і I
g	gravitational acceleration, m/s ²								
Н	height, m					IOI			
HI	improvement of riser gas holdup				1	Indi			
Κ	flow consistency index, Pa·s ⁿ					IISU			
K _f	overall friction coefficient					ze c			d_b
k_L	mass transfer coefficient, m/s					e sl			ity,
k _L a	volumetric mass transfer coefficient, 1/s				144	DDIG			eloc
L ₁₂	distance between two conductivity electrodes, m				4	ng ,			e V6
LVR	reduction of downcomer liquid velocity		ers	size		liol			LIS
n	flow behavior index		nete	ole		bers		-	bble
t	time, s		arar	lduc	÷	aısl			pn
U _G	superficial gas velocity, m/s		d p	(R, I		KIAI		k _L a	U _Б ,
VVL	liquid velocity, m/s		gate	t _c	;	e Z		,mm,	ġ,
Greek lette	ers		estig	ι, t _{m.} ι, ε _{Gl}		". "	ž ~	., U _G	cal ε s, U_{L}
€ _{GR,v}	riser gas holdup measured with volume expansion		١n	$k_{\rm I} c$	krc	5.01 t	503	n",	E CI
	technique							_	
ε_{GR}	riser gas holdup							39(
ρ	density, kg/m ³							= _	_
σ	surface tension, N/m		(uu	310 310	310	5 IU	9661	35, H	480C
Subscripts			cs (r	= 3(= 155	Ĩ H		= 55	H = I
С	circulation		istio	H_R	HR	л _к	5 6	H_R	90, 320
D	downcomer		cter	= 5(= 47,	4,			.61,	
DT	draft tube		ıara	 	= _0	ے 1 م	D_{D}	(D _D Э, Н
i	impeller		R ch	50, I	1,0	59, I 148	48,	1, L	19.0
т	mixing		-AL	1 1	1			1	
R	riser		EL	مٌ مّ	ď	5 6	ă ă	۵ Ľ	مّ مّ
Abbreviati	ons							ć	(S)
CMC	carboxymethylcellulose								аХ
DT-ALR	draft tube airlift reactor								tical
EL-ALR	external-loop airlift reactor								verl
EL-ALRI	external-loop airlift reactor with self-agitated im-								scs)
	pellers							,	le a n di
EL-ALRoX	external-loop airlift reactor with restriction orifice								bati usioi
	(X denotes orifice free area)	.s.		ы					cpar
SO	single orifice	ctor		kin					etw.
SP	sinter plate	rea		pac		ino	ing	-	e be
		rlift		esh	king	ack	ack		ingl n a
		aiı		8	acl	-	- <u> </u>		tio a

rise velocities which lead to increased gas holdup [8,9]. In EL-ALRs, the type of gas sparger influences hydrodynamics only through initial bubble size [10]. The impact of sparger type is more pronounced at lower gas throughputs, i.e. bubbly flow or transition flow, in which the size of bubbles in the dispersion is determined by the bubble size at formation [11]. In the case of heterogeneous flow, the influence of sparger type is lessened due to strong bubble coalescence. Hence, sparger type influence is even more emphasized in systems with inhibited coalescence, like alcohol solutions.

Various modifications of both internal- and external-loop airlift reactors have been developed as a result of increasing demand for improved yield and productivity. Some of them have inserted internals like baffles [12,13], perforated plates [3,7,14], static mixers [15-17], mechanically driven impellers [18-20], packed beds [21-23] or custom designed internals [4,24,25], which obstruct fluid flow and intensify mixing and mass transfer. Summarized in Table 1 are listed characteristics of modified EL-ALR with the details of used internals.

 Table 1

 Review of investigated types of internals in external-loop

	cernal type	EL-ALR characteristics (mm)	Investigated parameters	↓ IH
Lin et al. [12] Sla	anted baffles	$D_{\rm R} = 150, D_{\rm D} = 50, H = 3000$	$k_L a, t_m, t_c$	I
Nikakhtari and Hill [22] Wc	oven stainless steel mesh packing	$D_R = 89, D_D = 47, H_R = 1810$	$k_L a, \epsilon_{GR}, U_{LR}$, bubble size	20-1309
Nikakhtari and Hill [26] Wc	oven nylon mesh packing	$D_R = 89, D_D = 47, H_R = 1810$	kta	I
Meng et al. [23] Wc	oven nylon packing	$D_R = 89, D_D = 47, H_R = 1810$	ε_{GR} , U_{LR} , axial dispersion, bubble size distribution	21-35%
Hamood-ur-Rehman et al. [21] Tw	vo rolls of fiberglass packing	$D_{\rm R} = 248, D_{\rm D} = 102, H = 1996$	t_m, U_{LR}	I
Hamood-ur-Rehman et al. [27] Tw	vo rolls of fiberglass packing	$D_{\rm R} = 248, D_{\rm D} = 102, H = 1996$	EGR	5 - 15%
Goto and Gaspillo [15] Sta	atic mixer	$D_{\rm R} = 27, D_{\rm D} = 61, H_{\rm R} = 585, H_{\rm D} = 390$	U_{LR} , $U_{G,min}$, $k_L a$	I
Zhang et al. [4] Per	rforated baffles (45° angle between baffle and vertical axis)	$D_{\rm R} = 230, D_{\rm D} = 190, H = 4800$	Local ε_{GR} , U_{LR} , bubble rise velocity, d_b	I
Mohanty et al. [24] 7 ii	internals (4 contraction and 3 expansion discs)	$D_{\rm R} = 219.9, H = 1820$	ε_{GR} , U_{Lc}	I
Chisti et al. [16] SM	AV-12 static mixer elements	$D_{\rm R} = 50, \ D_{\rm D} = 75$	kra	I
Gavrilescu et al. [17] Sul	lzer type static mixer	$A_{\rm D}/A_{\rm R}=0.1225$	U _{LR} , E _{GR}	I
This paper 9 s	self-agitated impellers	$D_R = 93, D_D = 54, H = 2360$	ε_{GR}, W_{LD}	11–36%

Please cite this article as: N.Lj. Lukić et al., Enhanced hydrodynamics in a novel external-loop airlift reactor with self-agitated impellers, Journal of the Taiwan Institute of Chemical Engineers (2016), http://dx.doi.org/10.1016/j.jtice.2016.09.003

Download English Version:

https://daneshyari.com/en/article/4999017

Download Persian Version:

https://daneshyari.com/article/4999017

Daneshyari.com