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Abstract

We present an LES-type variational multiscale theory of turbulence. Our approach derives completely from the incompressible
Navier–Stokes equations and does not employ any ad hoc devices, such as eddy viscosities. We tested the formulation on forced homo-
geneous isotropic turbulence and turbulent channel flows. In the calculations, we employed linear, quadratic and cubic NURBS. A dis-
persion analysis of simple model problems revealed NURBS elements to be superior to classical finite elements in approximating
advective and diffusive processes, which play a significant role in turbulence computations. The numerical results are very good and con-
firm the viability of the theoretical framework.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Variational multiscale concepts for Large Eddy Simula-
tion (LES) were introduced in [33]. The basic idea was to
use variational projections in place of the traditional filtered
equations and to focus modeling on the fine-scale equa-
tions. Avoidance of filters eliminates many difficulties
associated with the traditional approach, namely, inhomo-
geneous non-commutative filters necessary for wall-
bounded flows, use of complex filtered quantities in
compressible flows, etc. In addition, modeling confined to

the fine-scale equations retains numerical consistency in
the coarse-scale equations and thus permits full rate-of-
convergence of the underlying numerical method in con-
trast with the usual approach, which limits convergence rate
due to artificial viscosity effects in the fully resolved scales
(O(h4/3) in the case of Smagorinsky-type models). Initial
versions of the variational multiscale method focused on
dividing resolved scales into coarse and fine designations,
and eddy viscosities, inspired by traditional models, were
only included in the fine-scale equations, and acted only
on the fine scales. This version was studied in [34,36,56],
and found to work very well on homogeneous isotropic
flows and fully-developed equilibrium and non-equilibrium
turbulent channel flows. Static eddy viscosity models
were employed in these studies but superior results were
subsequently obtained through the use of dynamic models,
as reported in [27,41]. Good numerical results were
obtained with the static approach by other investigators,
namely, Collis [18], Jeanmart and Winckelmans [44], and
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Ramakrishnan and Collis [59–62]. Particular mention
should be made of the work of Farhat and Koobus [20],
and Koobus and Farhat [48], who have implemented this
procedure in an unstructured mesh, finite element/finite vol-
ume, compressible flow code, and applied it very success-
fully to a number of complex test cases and industrial
flows. A valuable review with many references to relevant
literature may be found in [22]. We believe that this initial
version of the variational multiscale concept has already
demonstrated its viability and practical utility and is, at
the very least, competitive with traditional LES turbulence
modeling approaches. For a comprehensive treatment of
multiscale concepts in turbulence, see [65]. There has also
been a number of contributions to the literature in which
stabilized numerical methods have been used to model tur-
bulence (see, e.g. [26]). These endeavors are somewhat dif-
ferent in philosophy than the present contribution.

Nevertheless, there is still significant room for improve-
ment. The use of traditional eddy viscosities to represent
fine-scale dissipation is an inefficient mechanism. Employ-
ing an eddy viscosity in the resolved fine scales to represent
turbulent dissipation introduces a consistency error, which
results in the resolved fine scales being sacrificed to retain
full consistency in the coarse scales. (In our opinion, this
is still better than the traditional approach in which consis-
tency in all resolved scales is sacrificed to represent turbu-
lent dissipation.) This procedure is felt to be inefficient
because approximately 7/8 of the resolved scales are typi-
cally ascribed to the fine scales. Another shortcoming
noted for the initial version of the variational multiscale
method is too small an energy transfer to unresolved modes
when the discretization is very coarse (see, e.g. [41]). This
phenomenon is also noted for some traditional models,
such as the dynamic Smagorinsky model, Hughes et al.
[41], but, by design, is more pronounced for the multiscale
version of the dynamic model. The objectives of recent mul-

tiscale work have been to capture all scales consistently and

to avoid use of eddy viscosities altogether. This holds the
promise of much more accurate and efficient LES proce-
dures. In this work, we describe a new variational multi-
scale formulation, which makes considerable progress
toward these goals. In what follows, all resolved scales
are viewed as coarse scales, which obviates the aforemen-
tioned issue of inefficiency ab initio.

We begin by taking the view that the decomposition into
coarse and fine scales is exact. For example, in the spectral
case, the coarse-scale space consists of all Fourier modes
beneath some cut-off wave number and the fine-scale space
consists of all remaining Fourier modes. Consequently, the
coarse-scale space has finite dimension whereas the fine-
scale space is infinite dimensional. The derivation of the
coarse- and fine-scale equations proceeds, first, by substi-
tuting the split of the exact solution into coarse and fine
scales into the Navier–Stokes equations, then, second, by
projecting this equation into the coarse- and fine-scale sub-
spaces. The projection into coarse scales is a finite-dimen-
sional system for the coarse-scale component of the

solution, which depends parametrically on the fine-scale
component. In the spectral case, in addition to the usual
terms involving the coarse-scale component, only the
cross-stress and Reynolds-stress terms involve the fine-scale
component. In the case of non-orthogonal bases, even the
linear terms give rise to coupling between coarse and fine
scales. The coarse-scale component plays an analogous role
to the filtered field in the classical approach, but has the
advantage of avoiding all problems associated with homo-
geneity, commutativity, walls, compressibility, etc. The
projection into fine scales is an infinite-dimensional system
for the fine-scale component of the solution, which depends
parametrically on the coarse-scale component. We also
assume the cut-off wave number is sufficiently large that
the philosophy of LES is appropriate. For example, if there
is a well-defined inertial sub-range, then we assume the cut-
off wave number resides somewhere within it. This assump-
tion enables us to further assume that the energy content in
the fine scales is small compared with the coarse scales.
This turns out to be important in our efforts to analytically
represent the solution of the fine-scale equations. The strat-
egy is to obtain approximate analytical expressions for the
fine scales then substitute them into the coarse-scale equa-
tions which are, in turn, solved numerically. If the scale
decomposition is performed in space and time, the only

approximation in the procedure is the representation of
the fine-scale solution. To provide a framework for the
fine-scale approximation, we assume an infinite perturba-
tion series expansion to treat the fine-scale nonlinear term
in the fine-scale equation. By virtue of the smallness of
the fine scales, this expansion is expected to converge rap-
idly under the circumstances described in many cases of
practical interest. The remaining part of the fine-scale
Navier–Stokes system is the linearized operator which is
formally inverted through the use of a matrix Green’s func-
tion. The combination of a perturbation series and Green’s
function provides an exact formal solution of the fine-scale
Navier–Stokes equations. The driving force in these equa-
tions is the Navier–Stokes system residual computed from
the coarse scales. This expresses the intuitively obvious fact
that if the coarse scales constitute a good approximation to
the solution of the problem, the coarse-scale residual will
be small and the resulting fine-scale solution will be small
as well. This is the case we have in mind and it provides
a rational basis for assuming the perturbation series con-
verges rapidly. Note that one cannot use such an argument
on the original problem because in this case the perturba-
tion series would almost definitely fail to converge. (If we
could have used this argument, we would have solved the
Navier–Stokes equations analytically! Unfortunately, it
does not work.) The formal solution of the fine-scale equa-
tions suggests various approximations may be employed in
practical problem solving. We are tempted to use the word
‘‘modeling’’ because approximate analytical representa-
tions of the fine scales constitute the only approximation
and hence may be thought of as the ‘‘modeling’’ compo-
nent of the present approach but we want to emphasize
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