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a b s t r a c t 

Resilience has become a key aspect in the design of contemporary infrastructure networks. This comes as 

a result of ever-increasing loads, limited physical capacity, and fast-growing levels of interconnectedness 

and complexity due to the recent technological advancements. The problem has motivated a considerable 

amount of research within the last few years, particularly focused on the dynamical aspects of network 

flows, complementing more classical static network flow optimization approaches. 

In this tutorial paper, a class of single-commodity first-order models of dynamical flow networks is 

considered. A few results recently appeared in the literature and dealing with stability and robustness 

of dynamical flow networks are gathered and originally presented in a unified framework. In particular, 

(differential) stability properties of monotone dynamical flow networks are treated in some detail, and 

the notion of margin of resilience is introduced as a quantitative measure of their robustness. While 

emphasizing methodological aspects —including structural properties, such as monotonicity, that enable 

tractability and scalability— over the specific applications, connections to well-established road traffic 

flow models are made. 

© 2017 International Federation of Automatic Control. Published by Elsevier Ltd. All rights reserved. 

1. Introduction 

As critical infrastructure networks, such as transport and en- 

ergy, are being utilized closer and closer to their capacity limits, 

the complex interaction between physical systems, cyber layers, 

and human decision makers has created new challenges in simul- 

taneously achieving efficiency and reliability. The recent technolog- 

ical advancements in terms of smart sensors, high-speed commu- 

nication, and real-time decision capabilities have exacerbated the 

large-scale interconnected nature of these systems, and increased 

both the potential gains associated to their optimization and their 

inherent systemic risks. In fact, while designed to perform well 

under normal operation conditions, such complex systems tend 

to exhibit critical fragilities in response to unforeseen disruptions. 

Even if simply started from small local perturbations, such disrup- 

tions have the potential to build up through cascading mechanisms 

driven by the interconnected dynamics of the infrastructure net- 

work, possibly leading to detrimental systemic effects. The term 

resilience refers to the ability of these systems “to plan and pre- 

pare for, absorb, respond to, and recover from disasters and adapt 

� The author is a member of the excellence centres LCCC and ELLIIT. His research 

has been supported by the Swedish Research Council through a Project Research 

Grant. 
∗ Corresponding author. 

E-mail addresses: giacomo.como@control.lth.se , giacomo.como@polito.it 

to new conditions” (definition by the US National Academy of Sci- 

ences 2012 ). 

Whilst static network flow optimization has long been regarded 

as a fundamental design paradigm for infrastructure systems and 

represents a central area of mathematical programming ( Ahuja, 

Magnanti, & Orlin, 1993; Bertsekas, 1998; Whittle, 2007 ), there is 

an increasing awareness that the full potential of the emerging 

technologies and the nature of the associated systemic risks can 

only be understood by developing systems modeling, robustness 

analysis, and control synthesis within a dynamical framework: this 

recognition is stimulating considerable interest in the control sys- 

tems community. In this tutorial paper, based on a semi-plenary 

lecture given by the author at the 22nd International Symposium 

on the Mathematical Theory of Networks and Systems, a few re- 

cent results on stability and robustness of dynamical flow net- 

works are presented. While emphasizing methodological aspects 

—in particular, structural properties enabling tractability and scala- 

bility of the considered models— over the specific applications, this 

paper also makes connections to well-established road traffic flow 

models. 

Our focus is on first-order models of dynamical flow networks , 

describing the flow of mass among a finite set of interconnected 

cells. Such dynamical systems have sometimes been referred to as 

compartmental systems in some of the literature ( Jacquez & Simon, 

1993; Walter & Contreras, 1999 ). Our main interest is on nonlinear 

dynamical flow networks, with nonlinearities especially account- 
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ing for congestion effects. Special attention is devoted to demand 

and supply constraints limiting, respectively, the maximum outflow 

from and the maximum inflow in the cells as a function of their 

current mass, as in Daganzo’s cell transmission model for road 

traffic network flows ( Daganzo, 1994, 1995 ). We introduce a class 

of monotone dynamical flow networks, characterized by structural 

properties of the dependence of the flow variables on the network 

state. We show that, while this class is large enough to encom- 

pass many examples of applicative interest, the system structure of 

monotone dynamical flow networks is such that their dynamic be- 

haviors, and especially stability and robustness properties, are ana- 

lyzable in a tractable and scalable way. In particular, in this paper, 

we: (i) present results relating the (differential) stability of (nonlin- 

ear) monotone dynamical flow networks to graph-theoretical prop- 

erties; (ii) introduce the notion of margin of resilience as a measure 

of their robustness against exogenous perturbations; and (iii) study 

a class of locally responsive feedback routing and flow control poli- 

cies that are able to achieve the maximum possible margin of re- 

silience for a given network topology in spite of relying on local 

information only and requiring no global knowledge of the net- 

work. 

The remainder of this paper is organized as follows. In 

Section 2 , we first introduce dynamical flow networks. In Section 3 , 

we focus on their simplest instance, affine dynamical flow net- 

works, for which we gather some results relating their (global, ex- 

ponential) stability to outflow-connectivity properties of the net- 

work topology. In Section 4 , we define the notion of monotone 

dynamical flow networks, present stability results that can be de- 

duced for this system structure, and show how they can be applied 

to dual ascent dynamics for static convex network flow optimiza- 

tion. In Section 5 , we introduce nonlinear dynamical flow networks 

with demand and supply constraints and show how several exam- 

ples of network flow dynamics from the literature that can be fit 

in this framework also belong to the class of monotone dynami- 

cal flow networks (either globally or locally), so that the stability 

results of Section 4 can be successfully applied. In Section 6 , we 

study robustness of nonlinear dynamical flow networks with re- 

spect to perturbations of the demand functions (hence, of the flow 

capacities) as well as of the external inflows. We introduce the no- 

tion of margin of resilience as a quantitative measure of robust- 

ness and compute the margin of resilience of different classes of 

distributed routing and flow control policies. 

We end this introductory section by gathering some notational 

conventions to be adopted throughout the paper. The sets of real 

numbers and of nonnegative real numbers are denoted by R and 

R + , respectively. The all-one vector is denoted by 1 , the all-zero 

vector simply by 0, the identity matrix by I = diag ( 1 ) , and the 

transpose of a matrix M by M 

T . Inequalities between vectors are 

meant to hold true entrywise, i.e., if a, b ∈ R 

n , then a ≥ b means 

that a i ≥ b i for all i = 1 , . . . , n . A square matrix M is called: non- 

negative if all its entries are nonnegative; Metzler if all its non- 

diagonal entries are nonnegative, i.e., M ij ≥ 0 for all i � = j ( Berman 

& Plemmons, 1994 ); (row) diagonally dominant if | M ii | ≥ �j � = i | M ij |; 

compartmental if it is Metzler and diagonally dominant; Hurwitz if 

all its eigenvalues have negative real part; and substochastic if it 

is nonnegative and such that M 1 ≤ 1 , i.e., its rows all sum up to 

less than or equal to 1. A directed graph, shortly digraph , is the 

pair (V, E ) of a finite node set V and a link set E ⊆ V × V, whereby 

links (i, j) ∈ E are interpreted as pointing from node i to node j . A 

length- l path from a node i to a node j in a digraph G = (V, E ) is a 

sequence of nodes { v 0 , v 1 , . . . , v l } ⊆ V such that v 0 = i, v l = j, v h � = 

v k for all 0 ≤ h < k ≤ l , and (v h −1 , v h ) ∈ E for all h = 1 , . . . , l. The 

gradient of a function f : R 

n → R 

m in a point x of its domain is 

the matrix ∇ f (x ) ∈ R 

m ×n whose entries are the partial derivatives 

[ ∇ f (x )] i j = ∂ f i (x ) /∂x j : if m = h + l and the variable is explicitly 

written as x = (y, z) where y ∈ R 

h and z ∈ R 

l , then ∇ y f (y, z) ∈ R 

h ×n 

and ∇ z f (y, z) ∈ R 

l×n are the left and right blocks of ∇ f (x ) ∈ R 

m ×n , 

so that ∇ f (x ) = [ ∇ y f (y, z) , ∇ z f (y, z)] . 

2. Dynamical flow networks 

This paper focuses on single-commodity, first-order models of 

dynamical flow networks, also referred to as compartmental sys- 

tems in some of the literature ( Jacquez & Simon, 1993; Walter & 

Contreras, 1999 ). These are dynamical systems with n -dimensional 

state vector x = x (t) that belongs to the nonnegative orthant R 

n + at 

any time t ≥ 0. The entries x i = x i (t) of the state vector represent 

the mass in each cell i ∈ I, where I := { 1 , . . . , n } is a finite set of 

interconnected cells. The network flow dynamics can be compactly 

expressed as 

˙ x = u + F T 1 − F 1 − w (1) 

where: 

(i) u ∈ R 

n + is a nonnegative vector supported on a subset R ⊆ I
whose entries u i model the external inflows in the cells i ∈ R ; 

(ii) F ∈ R 

n ×n 
+ is a nonnegative matrix supported on a subset A ⊆

I × I of ordered pairs of adjacent cells whose nonzero entries 

F ij represent the flow from cell i to cell j for all pairs (i, j) ∈ A 

1 ; 

(iii) And w ∈ R 

n + is a nonnegative vector supported on a subset 

S ⊆ I whose entries w i model the outflows from the cells i ∈ R 

towards the external environment. 

Hence, in particular, we have 

u i = 0 , i / ∈ R , F i j = 0 , (i, j) / ∈ A , w i = 0 , i / ∈ S . 
(2) 

While in typical applications the external inflows are — either con- 

stant or time-varying — exogenous inputs, the flow variables F and 

w in general may depend both on the state x (thus allowing for 

feedback) and directly on the time t (thus allowing for exogenous 

time variability). Invariance of the nonnegative orthant R 

n + for the 

state vector x is guaranteed by the additional constraint 

x i = 0 
⇒ w i = 0 , F i j = 0 , i, j ∈ I , (3) 

i.e., the outflow from an empty cell is always 0. Entrywise rewrit- 

ing of the dynamics (1) reads 

˙ x i = u i + 

∑ 

j∈I 
F ji −

∑ 

j∈I 
F i j − w i , i ∈ I , 

which is physically interpreted as a mass conservation law : the rate 

of change of the mass in cell i equals the imbalance between the 

total inflow in it and the total outflow from it, the former coincid- 

ing with the sum of the external inflow u i and the aggregate in- 

flow from the other cells 
∑ 

j∈I F ji , and the latter being given by the 

aggregate outflow towards other cells 
∑ 

j∈I F i j and the outflow to- 

wards the external environment w i . An equivalent form of (1) that 

will often prove convenient is 

˙ x = u − (I − R 

T ) z , (4) 

where 

z = F 1 + w 

is a nonegative n -dimensional vector whose entries 

z i = 

∑ 

j∈I 
F i j + w i 

represent the total outflows from the cells i ∈ I, and R ∈ R 

n ×n is 

a routing matrix whose entries R ij , sometimes referred to as split 

1 Throughout, we will always assume that (i, i ) / ∈ A , so that F ii = 0 , for all i ∈ I . 
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