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a b s t r a c t 

This paper reviews the vast literature on static output feedback design for linear time-invariant systems 

including classical results and recent developments. In particular, we focus on static output feedback syn- 

thesis with performance specifications, structured static output feedback, and robustness. The paper pro- 

vides a comprehensive review on existing design approaches including iterative linear matrix inequalities 

heuristics, linear matrix inequalities with rank constraints, methods with decoupled Lyapunov matrices, 

and non-Lyapunov-based approaches. We describe the main difficulties of dealing with static output feed- 

back design and summarize the main features, advantages, and limitations of existing design methods. 

© 2016 International Federation of Automatic Control. Published by Elsevier Ltd. All rights reserved. 

1. Introduction 

Static output feedback design is a theoretically challenging is- 

sue in control theory and it has attracted considerable attention 

due to its great importance in practice. However, so far, there has 

been no exact solution to this prominent problem which can guar- 

antee the design of static output feedback or determine that such a 

feedback does not exist. The fact is that the problem is intrinsically 

a Bilinear Matrix Inequality (BMI) problem which is generally NP- 

hard ( Toker & Ozbay, 1995 ); furthermore, it becomes non-smooth 

in the case of problem formulation in the space of the controller 

parameters ( Toscano, 2013 ). 

To solve the static output feedback design problem, well-known 

bilinear matrix inequality (BMI) solvers such as the commercial 

software package PENBMI ( Henrion, Lofberg, Kocvara, & Stingl, 

20 05; Kocvara & Stingl, 20 06 ) and the free open-source MATLAB 

toolbox PENLAB ( Fiala, Kocvara, & Stingl, 2013 ) can be applied. The 

algorithms behind these solvers combines the ideas of the (exte- 

rior) penalty and (interior) barrier methods with the augmented 

Lagrangian approach ( Kocvara & Stingl, 2003 ). These solvers can 

locally solve all kinds of BMI problems, including static output 

feedback. Since our aim is to survey dedicated static output feed- 

back design methods, we no longer discuss these general BMI ap- 
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proaches. Note however that BMI solvers most often fail to provide 

a solution for the static output feedback BMI problems, and the 

choice of an initial guess is very crucial for these solvers. 

The only survey dedicated to static output feedback has been 

conducted in Syrmos, Abdallah, Dorato, and Grigoriadis (1997) . 

Since then, the past two decades have witnessed much theoreti- 

cal progress on static output feedback design which has not been 

covered in that survey. A large amount of research has been car- 

ried out on the development of the static output feedback con- 

trollers according to Lyapunov theory via linear matrix inequality 

based (LMI-based) approaches (e.g. Agulhari, Oliveira, and Peres, 

2012; Apkarian, Noll, and Tuan, 2003; Arzelier, Gryazina, Peau- 

celle, and Polyak, 2010; Arzelier and Peaucelle, 2002; Benton and 

Smith, 1998; Cao and Sun, 1998; Cao, Sun, and Mao, 1998; Dab- 

boussi and Zrida, 2012; Dong and Yang, 2013; Du and Yang, 

2008; Ebihara and Hagiwara, 2003; Ebihara, Tokuyama, and Hagi- 

wara, 2004; Geromel, de Souza, and Skelton, 1998b; Ghaoui, Ous- 

try, and Ait-Rami, 1997; Ghaoui and Balakrishnan, 1994; Grigo- 

riadis and Beran, 20 0 0; Grigoriadis and Skelton, 1996; Hassibi, 

How, and Boyd, 1999; Iwasaki, 1999; Iwasaki and Skelton, 1995b; 

Karimi and Sadabadi, 2013; Kim, Moon, and Kwon, 2007; Ko- 

roglu and Falcone, 2014; Lee, Lee, and Kwon, 2006; Leibfritz, 

2001; Mehdi, Boukas, and Bachelier, 2004; Moreira, Oliveira, and 

Peres, 2011; Noll, Torki, and Apkarian, 2004; Peaucelle and Arzelier, 

2001a; Sadabadi and Karimi, 2013a,b; 2015; Sadeghzadeh, 2014; 

Tran Dinh, Gumussoy, Michiels, and Diehl, 2012 ). Most of these 

methods present an iterative algorithm in which a set of LMIs 

http://dx.doi.org/10.1016/j.arcontrol.2016.09.014 

1367-5788/© 2016 International Federation of Automatic Control. Published by Elsevier Ltd. All rights reserved. 

Please cite this article as: M.S. Sadabadi, D. Peaucelle, From static output feedback to structured robust static output feedback: A survey, 

Annual Reviews in Control (2016), http://dx.doi.org/10.1016/j.arcontrol.2016.09.014 

http://dx.doi.org/10.1016/j.arcontrol.2016.09.014
http://www.ScienceDirect.com
http://www.elsevier.com/locate/arcontrol
mailto:mahdieh.sadabadi@liu.se
mailto:peaucelle@laas.fr
http://dx.doi.org/10.1016/j.arcontrol.2016.09.014
http://dx.doi.org/10.1016/j.arcontrol.2016.09.014


2 M.S. Sadabadi, D. Peaucelle / Annual Reviews in Control 0 0 0 (2016) 1–16 

ARTICLE IN PRESS 

JID: JARAP [m5G; October 3, 2016;20:27 ] 

is iteratively repeated until some certain termination criteria are 

met. In addition to the Lyapunov-based approaches, there exist 

non-Lyapunov-based static output feedback control strategies (see, 

e.g. Apkarian, 2013; Apkarian, Bompart, and Noll, 2007; Apkarian 

and Noll, 2006; Arzelier, Deaconu, Gumussoy, and Henrion, 2011; 

Burke, Henrion, and Overton, 2006b; Chesi, 2014; Gumussoy, Hen- 

rion, Millstone, and Overton, 2009; Gumussoy and Overton, 2008; 

Peretz, 2016 ). 

The objective of this paper is to provide a comprehensive 

review on the existing static output feedback design methods. 

The main focus is on pure stabilizing static output feedback de- 

sign with no other specification. But the paper also addresses 

the problem of structured feedback, simultaneous stabilization, 

multi-performance, and robust control design. All methods and ap- 

proaches described in the survey are gathered in order to provide 

a comprehensive classification. All results have been reinterpreted 

and rewritten so as to fit a common notation/framework. The nota- 

tion uniformization allows a simplified overview on the differences 

and resemblances of the results. It allows as well to provide direct 

extensions of the existing results for example using system dual- 

ity. Due to the fact that fixed-order dynamic output-feedback can 

equivalently be transformed into static output feedback by intro- 

ducing an augmented plant ( Ghaoui et al., 1997 ), this survey paper 

can also be used for fixed/low-order control design problem. 

The paper is organized as follows. Section 2 presents problem 

statement and main difficulties associated with stabilizing static 

output feedback design and its extensions to structured feedback, 

simultaneous stabilization, multi-performance, and robust control. 

The five sections that follow provide our classification of SOF de- 

sign methods. Section 3 focuses on special cases where under 

specific structures of the open-loop system, the SOF problem be- 

comes convex. Section 4 reviews the available literature on iter- 

ative LMI heuristics for the intrinsically BMI nature of SOF de- 

sign. Section 5 covers the heuristics related to a reformulation 

of the SOF design as LMIs with rank constraints. While all the 

previous sections describe results build out of classical Lyapunov 

conditions, Section 6 is devoted to methods with decoupled Lya- 

punov matrices that have better characteristics with respect to ro- 

bustness. Section 7 exposes alternative approaches which are non- 

Lyapunov-based. All the classes of results are analyzed in terms of 

their known or claimed numerical characteristics, well as in terms 

of their ability to address the structured feedback, simultaneous 

multi-performance, and robustness issues. The paper ends with 

global concluding remarks in Section 8 . 

The notation used in this paper is standard. In particular, matri- 

ces I and 0 are the identity matrix and the zero matrix of appro- 

priate dimensions, respectively. The symbol � denotes symmetric 

blocks in block matrices. The symbols A 

T , { A } S , A 

⊥ , ‖ A ‖ F , and A 

1 
2 

are respectively notations for the transpose of A , { A } S = A + A 

T , the 

maximal rank perpendicularity such that A 

⊥ A = 0 , Frobenius norm 

of A , and the unique nonnegative-definite square root of positive- 

definite matrix A . For symmetric matrices, P > 0 ( P < 0) indicates 

the positive-definiteness (the negative-definiteness). 

2. Problem formulation and main difficulties 

2.1. Main SOF stabilization problem 

Consider a linear time-invariant (LTI) continuous-time system 

˙ x (t) = Ax (t) + Bu (t) 

y (t) = Cx (t) (1) 

and a static output feedback controller 

u (t) = Ky (t) (2) 

where x ∈ R 

n is the state, u ∈ R 

n i in the control input, and y ∈ R 

n o 

is the output of the system. The state-space matrices A, B, C , and 

the control gain K are of appropriate dimensions. The closed-loop 

system is described as follows: 

˙ x (t) = (A + BKC) x (t) (3) 

and its stability is equivalent to that of the dual system 

˙ x d (t) = (A + BKC) T x d (t) . (4) 

Theorem 1. The following statements are equivalent and prove that 

the static output feedback (2) stabilizes the system (1) . 

(a) The eigenvalues of A + BKC are all in the left-half plane. 

(b) There exists a symmetric matrix P satisfying the following ma- 

trix inequalities (Lyapunov inequalities for the primal system): 

P > 0 , { P (A + BKC) } S < 0 (5) 

(c) There exists a symmetric matrix Q satisfying the following ma- 

trix inequalities (Lyapunov inequalities for the dual system): 

Q > 0 , { (A + BKC) Q} S < 0 (6) 

Moreover, Q = P −1 holds to prove equivalence of the two last 

conditions. 

The main difficulties associated with static output feedback de- 

sign are as follows ( Henrion, 2015 ): 

• Non-differentiability: The performance objective related to the 

first statement (maximal real part of all eigenvalues) is a non- 

differential function of K . The spectral abscissa of the closed- 

loop state matrix A + BKC is a continuous but non-Lipschitz 

function of K ; thus, its gradient can be locally unbounded. 

• Non-convexity: The stability conditions (5) or (6) are not con- 

vex in the unknowns due to the terms containing products of P 

and K and products of Q and K , respectively. 

For concrete control system design, the problem formulation is 

scarcely limited to proving stability of the closed-loop. The actual 

problems to be solved include multi-objective and robustness spec- 

ifications as well as structure constraints on the control gains. In 

this survey we shall not enter in all the details of how these speci- 

fications are formulated for each considered method, and most of- 

ten they are not. We will rather give a general appreciation of the 

ability of the methods to address these specifications. 

2.2. Structured SOF 

Constraints on the control structure are mainly rooted in dif- 

ferent sources. The first source comes from the well-known Inter- 

nal Model Principle (IMP) ( Francis & Wonham, 1976 ) which states 

that for tracking and disturbance rejection, the dynamics of persis- 

tently exciting references and/or disturbances must be replicated 

in the structure of the controller. Furthermore, the well-known 

proportional-integral (PI) and proportional-integral-derivative (PID) 

controllers, widely used in industrial control systems, inherently 

have a fixed structure. Finally, the last main source results from 

a need for decentralized or distributed control of large-scale in- 

terconnected systems due to cost, reliability issues, and limitations 

on communication links among the local controllers ( Zecevic & Sil- 

jak, 2010 ). All these reasons highlight the paramount importance 

of structured control design. 

Mathematically these structural constraints usually boil down 

to impose that some coefficients are zero in the K matrix and/or 

that some others are linearly dependent. More general non-linear 

constraints may also occur but for the present survey we shall as- 

sume that structure constraints are linear equality constraints of 

the type L s KR s = C s where there may be several triples of given 

matrices ( L s , R s , C s ). 
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