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a b s t r a c t 

A framework merging the set-membership and the stochastic paradigms is formalized and used to de- 

sign an Extended Zonotopic and Gaussian Kalman Filter (EZGKF) dealing with the robust state estimation 

and the fault detection of uncertain discrete-time nonlinear systems. The so-called Set-membership and 

Gaussian Mergers (SGM) are introduced and particularized to Zonotopes (ZGM). They provide a construc- 

tive and computationally efficient solution to propagate random uncertainties with incompletely specified 

probability distributions combining set-based support enclosures and upper covariance matrix bounds 

formalized as matrix inequalities. Based on a full time-varying LPV enclosure featuring structured state 

matrix uncertainties, and given some confidence level expressed in probabilistic terms (maximal false 

alarm rate), a detection test is developed and shown to merge the usually mutually exclusive benefits 

granted by set-membership techniques (robustness to the worst-case within specified bounds, domain 

computations) and stochastic approaches (taking noise distribution into account, probabilistic evaluation 

of tests). A numerical example illustrates the state estimation capabilities of EZGKF and the improved 

tradeoff between the sensitivity to faults and the robustness to disturbances/noises. 

© 2016 International Federation of Automatic Control. Published by Elsevier Ltd. All rights reserved. 

1. Introduction 

Relevant descriptions of disturbances and noises as well as ef- 

ficient computational methods evaluating their propagation within 

system dynamics appear as a cornerstone of reliable state estima- 

tion and fault diagnosis. Indeed, not only a nominal trajectory but 

also a whole set of possible deviations from it must be character- 

ized as accurately as possible for a faulty behavior to be almost 

surely detected in spite of uncertainties which are inherent to 

the modeling task. Either mainly based on some knowledge or 

some data, the models used for fault detection and diagnosis 

( Blanke, Kinnaert, Lunze, and Staroswiecki, 2003 ; Ding, 2008 ; 

Frank, 1990 ; Isermann, 2005 ) remain subject to such requirements 

to achieve a good tradeoff between the sensitivity to faults and 

the robustness to disturbances and noises. When dealing with 

uncertainties, two usually distinct paradigms can be used: the 

stochastic one and the set-membership (or bounded-error) one. 
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Based on stochastic processes, Kalman filtering ( Kalman, 1960; 

Maybeck, 1979 ) has been successfully used in a wide range of 

applications, including fault detection. Mainly based on Gaussian 

probability distributions (in spite of several kinds of extensions), it 

is often well suited to deal with measurement noises. However, the 

modeling of disturbances mostly related to some lack of knowl- 

edge about deterministic behaviors (e.g. load torque of a motor 

under incompletely specified operating conditions) is often more 

representative using bounded errors than Gaussian distributions. 

Indeed, such disturbances can successively vary arbitrarily, then 

temporarily remain constant but equal to unknown values, then 

vary again but differently, etc., and do not have any other station- 

ary behavior than that of remaining within specified bounds, at 

least under fault-free operational conditions. Set-membership tech- 

niques, either based on ellipsoids ( Kurzhanskiy & Varaiya, 2007; 

Maksarov & Norton, 2002; Schweppe, 1968 ), intervals ( Jaulin, 

Kieffer, Didrit, & Walter, 2001; Moore, 1966; Raïssi, Efimov, & 

Zolghadri, 2012; Ramdani, Meslem, & Candau, 2009 ), polytopes 

or zonotopes ( Combastel, 2003; 2015b; Kühn, 1998a; Le, Stoica, 

Alamo, Camacho, & Dumur, 2013; Puig, Saludes, & Quevedo, 2003 ) 

are well suited to deal with them. In this context, state bounding 

observers based on predictor/corrector approaches (so resembling 
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Kalman filters) can be used ( Combastel, 2003; Jaulin et al., 2001 ). 

However, contrary to stochastic Kalman filters which efficiently 

deal with random (measurement) noises, a bounded-error descrip- 

tion of measurement noise often induces an unnecessary loss of 

precision reducing the sensitivity to faults. 

This motivates the study of combined stochastic and set- 

theoretic uncertainties. This topic has not received much attention 

in the literature. However, Tjarnstrom and Garulli (2002) proposes 

a mixed approach to the identification of linear dynamic systems 

subject to an additive bounded white noise. Some works about in- 

terval Kalman filtering ( Chen, Wang, and Leang Shieh, 1997 ; Xiong, 

Jauberthie, and Trave-Massuyes, 2013 ) already deal with Gaussian 

noises and unstructured interval state-space matrix uncertainties. 

The required interval matrix inversions may be addressed by ap- 

proximations either leading to the loss of some solutions ( Chen 

et al. 1997 ) or to some overestimation effects unless set inver- 

sion techniques are used Xiong et al. (2013) . Efficient optimal 

Kalman gain computations for combined Gaussian and Ellipsoidal 

state estimation are proposed in Noack, Pfaff, and Hanebeck (2012) . 

Based on a linear time invariant discrete-time system with Gaus- 

sian white noises as inputs, Shi, Chen, and Shi (2015) study set- 

valued Kalman filtering and its application to event-based state 

estimation. Sets of estimation means and ellipsoidal domains are 

used. Though very well suited to be combined with a Gaussian dis- 

tribution, a single ellipsoid may hardly capture some refinements 

in the shape of the set of states consistent with generic interval- 

bounded disturbances. In Benavoli and Piga (2016) , sets of proba- 

bility measures are used in conjunction with polytopic bounding to 

reformulate set-membership estimation in a probabilistic setting, 

with an application to polynomial systems subject to bounded un- 

certainties. In Combastel (2015a) , discrete-time LTV fault-free mod- 

els simultaneously excited by bounded disturbances and Gaussian 

noises have been considered, and a computationally efficient solu- 

tion merging Gaussian Kalman filtering and zonotopic state bound- 

ing for robust fault detection under noisy environment has been 

proposed. 

Developing an Extended version of the Zonotopic and Gaus- 

sian Kalman Filter (ZGKF) first introduced in Combastel (2015a) is 

the main subject of this paper. Under mild assumptions, the pro- 

posed extension deals with the robust state estimation and the 

fault detection of uncertain nonlinear discrete-time models based 

on reliable LPV/LTV enclosures. To that purpose, an original frame- 

work merging set-membership and stochastic paradigms is for- 

malized. Only upper bounds of covariance matrices are required 

to describe the Gaussian uncertainties involved in the so-called 

Set-membership and Gaussian Mergers (SGM) which are intro- 

duced here for the first time. The SGM are then particularized 

to zonotopes, so resulting in Zonotopic and Gaussian Mergers 

(ZGM), which permit to constructively and efficiently propagate 

random uncertainties under incompletely specified probability dis- 

tributions. Prediction domains satisfying a given confidence level 

expressed in probabilistic terms can still be obtained, while affinely 

structured state matrix uncertainties are explicitly treated by the 

proposed Extended Zonotopic and Gaussian Kalman Filter (EZGKF). 

The algorithm is designed so as to combine the usually mutually 

exclusive benefits granted by set-membership techniques (robust- 

ness to the worst-case within specified bounds, domain compu- 

tations) and stochastic approaches (taking noise distribution into 

account, probabilistic evaluation of tests e.g. false alarm rates). 

EZGKF can be used not only for robust state estimation but also 

for fault detection, as illustrated by a numerical example based on 

a discrete-time nonlinear prey-predator model. 

The paper is organized as follows: after the preliminaries given 

in the Section 2 , a framework merging the set-membership and 

the stochastic paradigms is formalized in the Section 3 . The prob- 

lem formulation follows in the Section 4 . Based on the observer 

structure given in the Section 5 , a multi-objective optimality cri- 

terion is proposed in the Section 6 . Its purpose is to compute an 

optimal observer gain ( Section 7 ) leading to the explicit EZGKF al- 

gorithm given in the Section 9 after dealing with structured state 

matrix uncertainties in the Section 8 . Based on explicit prediction 

domains computed under a freely fixed confidence level, a fault 

detection test satisfying a requirement expressed as a probability 

of false alarms is proposed in the Section 10 . A numerical exam- 

ple illustrating the use of EZGKF as a nonlinear filter performing 

not only the estimation of states but also the detection of faults is 

then reported in the Section 11 . 

2. Preliminaries 

2.1. Probabilities: definitions and notations 

Let P = (�, �, P) be a probability space, where � is a set of 

possible outcomes, � ⊂ 2 � (powerset of �) defines a collection of 

events, and P is a probability measure. Let x and y be two ran- 

dom real vectors defined on P . Boldface names denote random 

variables. The expectation of x is E[ x ] = 

∫ 
� x dP . The operator E[.] 

is linear. The (cross)covariance between x and y is: Cov (x , y ) = 

E[(x − E[ x ])(y − E[ y ]) T ] = E[ xy T ] − E[ x ]E[ y ] T . The covariance of x 

(or variance in the scalar case) is Cov (x ) = Cov (x , x ) . For contin- 

uous random vectors like x , a probability density function (pdf), 

ρx : R 

n → R is such that ∀D ⊂ R 

n , P(x ∈ D) = 

∫ 
D ρx (x ) dx , where 

P(x ∈ D) is the probability that an outcome leads x to fall inside 

the domain D. The support S x of x is the smallest closed set whose 

complement has probability zero. So, P(x ∈ S x ) = 1 . 

2.2. Gaussian distribution and prediction ellipsoids 

Let x ∼ N (c, Q ) refer to a random vector following a Gaussian 

(normal) probability distribution with center c ∈ R 

n and covariance 

matrix Q ∈ R 

n ×n : 

ρx (x ) = 

1 √ 

(2 π) n det (Q ) 
exp 

(
−1 

2 

(x − c) T Q 

−1 (x − c) 
)
. (1) 

The support S x = R 

n is unbounded, but a prediction ellipsoid ( c, 

Q ) α under a given confidence level can be defined as: 

(c, Q ) α = { x ∈ R 

n , (x − c) T Q 

−1 (x − c) ≤ χ2 
n (1 − α) } , (2) 

where χ2 
n (1 − α) ∈ R is the value taken for the probability 1 − α

by the quantile function of the chi-squared distribution with n de- 

grees of freedom. The scalar parameter α can be interpreted as a 

probability of type I error (false alarm rate) when testing the mem- 

bership of an outcome of the random vector x to the ellipsoidal set 

( c, Q ) α: 

x ∼ N (c, Q ) ⇒ P(x ∈ (c, Q ) α) = 1 − α. (3) 

2.3. Zonotopes 

A zonotope 〈 c, R 〉 ⊂ R 

n with the center c ∈ R 

n and the generator 

matrix R ∈ R 

n ×p is a polytopic set defined as the linear image of 

the unit hypercube [ −1 , +1] p by R : 

〈 c, R 〉 = { c + Rs, ‖ s ‖ ∞ 

≤ 1 } . (4) 

The short notation 〈 R 〉 = 〈 0 , R 〉 refers to a centered zonotope. Any 

permutation of the columns of R leaves it invariant. The Minkowski 

sum of two sets S 1 and S 2 is S 1 � S 2 = { s 1 + s 2 , (s 1 , s 2 ) ∈ S 1 × S 2 } . 
The linear image of the set S ⊂ R 

n by L ∈ R 

q ×n is L � S = { Ls, s ∈ S} . 
Zonotopes form a class of polytopic sets implicitly represented 

by matrices and leading to efficient set computations. This class 

is closed under the Minkowski sum � (computed as a matrix 

concatenation) and the linear image � (computed as a matrix 
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