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a b s t r a c t

In this paper we discuss and discover several conservation and associated decay laws in distributed
coordination control systems, in particular in formation shape control systems. Specifically, we reveal
conservations of linear momentum and angular momentum for gradient-based multi-agent formation
systems modelled by single integrators, and show several corresponding conservation/decay laws for
double-integrator formation stabilization systems and double-integrator flocking systems, respectively.
By exploiting translation and rotation symmetry properties and insights from Noether’s theorem, we
further establish a multi-agent version of the relation between symmetry and conservation laws for
gradient-based coordination systems derived from general potential functions, fromwhichwe generalize
the conservation/decay laws to more general networked coordination control systems. The results hold
in ambient spaces of any dimensions, and we focus on the 2-D and 3-D cases due to their natural
interpretation as positions of agents.

© 2017 Published by Elsevier Ltd.

1. Introduction

Formation shape control for a group of autonomous agents is
concerned with designing distributed control laws such that all
agents are driven to reach a configuration with specified inter-
agent distances or relative positions. Formation control has been a
very active research topic in the field of multi-agent coordination
control, motivated by its broad applications in many areas (Oh,
Park, & Ahn, 2015). In the recent decade, formation control has
attracted increasing research attention and numerous results on
controller design, system dynamics, convergence and stability
analysis for formation systems are available; see e.g. Anderson and
Helmke (2014), Deghat, Anderson, and Lin (2016) Dimarogonas
and Johansson (2008), Egerstedt andHu (2001), Krick, Broucke, and
Francis (2009), Olfati-Saber andMurray (2002), and Sun, Anderson,
Deghat, and Ahn (2017). In this paper we focus on momentum
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conservation laws and decay laws of agents’ motions in distributed
formation shape control systems, and aim to providemore insights
on invariants and intrinsic properties for a distributed formation
system as a whole. Furthermore, we also aim to explore conserva-
tion laws arising from general networked or coordination control
systems that can be described as gradient flows from some general
potential functions.

Conserved quantities or invariants for a physical system are
quantities that remain unchanged under some transformations
and usually characterize fundamental properties of a system’s
evolution. When specializing to a formation shape control sys-
tem with networked interacting agents, we consider two types
of important quantities, namely, the formation system’s (overall)
linear momentum and angular momentum, defined as a sum of
all individual agents when their motions are described by some
gradient-based control laws. The conservation of linear momen-
tum for single-integrator formation systems can be interpreted as
the invariance of formation centroid, which has been repeatedly
proved in several earlier papers, e.g. Garcia de Marina, Jayaward-
hana, and Cao (2016a), Krick et al. (2009), Oh and Ahn (2014)
and Sun and Anderson et al. (2017) under different formation po-
tential functions and control contexts. The significance of proving
an invariant formation centroid lies in the analysis of formation
convergence. Note that the configuration space for all the agents
in formation control is usually unbounded which prevents a direct
application of commonly-used analytical tools such as LaSalle’s
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invariance principle (Khalil, 2002), which require a compactness
condition of certain sets in the convergence analysis. A formation
system with an invariant formation centroid then allows a coor-
dinate transformation which thus enables a correct application
of LaSalle’s invariance principle to prove the convergence (see
detailed discussions on this issue in Krick et al. (2009)).

In this paper wewill provide a comprehensive study on conser-
vation and decay laws of linear momentum and angular momen-
tum for both single-integrator and double-integrator formation
systems. We first show the conservation laws of both linear and
angular momenta when the formation systems are modelled by
single-integrator gradient systems. Then we go one step further
to discuss formation systems modelled by double integrators.
Double-integrator models have been popularly used in studying
networked systems such as formation flocking systems (Deghat et
al., 2016; Olfati-Saber, 2006; Sun and Anderson et al., 2017). We
will consider in detail two types of double-integrator formation
systems, namely, double-integrator formation stabilization sys-
tems and double-integrator flocking systems, and further reveal
several conservation or decay laws for theirmomentumquantities.
These results constitute the first main contribution of this paper.

Invariants of a system may also be understood by and reflect
some symmetry under group actions. We note that the symmetry
issue in networked systems has been exploited in several papers,
including (Nettleman & Goodwine, 2015; Vasile, Schwager, &
Belta, 2016; Zhang, 2010), while they have mostly focused on the
invariance of coordinate frame or system model reduction as a
consequence of symmetry under different group actions. In the
latter part of this paper, we will further exploit the symmetry
property of a formation potential to derive conservation laws or
momentum invariants, with the insights obtained from the cele-
brated Noether’s theorem. To this end, a multi-agent version of the
well-known relation between symmetry and conservation laws
will be established, which allows generalizations of the conser-
vation/decay laws from formation systems to other networked
control systems. These generalizations on networked coordination
systems constitute the second main contribution of this paper.
We also note that conservation or decay properties of momentum
quantities play a significant role in multi-agent coordination con-
trol, and typical applications include system reduction in optimal
formation collision avoidance (see e.g. Hu & Sastry, 2001) and
formation steering control (see e.g. Garcia de Marina et al., 2016a;
Markdahl, Karayiannidis, Hu, & Kragic, 2012).

This paper is organized as follows. In Section 2, preliminary
concepts on graph theory and formation systems (including both
single-integrator models and double-integrator models) are intro-
duced. In Section 3, we discuss the conservation laws for both
linear momentum and angular momentum for single-integrator
formation systems. Sections 4 and 5 focus on conservation/decay
laws of momentum quantities for double-integrator formation
stabilization system and for double-integrator flocking system,
respectively. Discussions with new insights from Noether’s the-
orem, as well as generalizations and applications of the conser-
vation/decay laws, are provided in Section 6. Finally, Section 7
concludes this paper.

2. Preliminaries and formation system equations

2.1. Preliminaries

Consider an undirected simple graph with m edges and n ver-
tices, denoted by G = (V, E) with vertex set V = {1, 2, . . . , n}
and edge set E ⊂ V × V . The neighbour set Ni of node i is defined
as Ni := {j ∈ V : (i, j) ∈ E}. We define an orientated incidence
matrix H ∈ Rm×n for the undirected graph G by assigning an
arbitrary orientation for each edge. Note that for a rigid formation

modelled as an undirected graph considered in this paper, the
orientation of each edge for writing the incidence matrix can be
defined arbitrarily and the stability and convergence analysis in
the next sections remains unchanged. Following this, we define
the entries of H as hki = +1 if the kth edge sinks at node i, or
hki = −1 if the kth edge leaves node i, or hki = 0 otherwise. The
adjacency matrix A(G) is a symmetric n × n matrix encoding the
vertex adjacency relationships, with entries aij = 1 if {i, j} ∈ E , and
aij = 0 otherwise. The Laplacian matrix L(G) is also often used for
matrix representation of a graphG, which is defined as L(G) = H⊤H
for undirected graphs. For a connected undirected graph, there
holds rank(L) = n − 1 and null(L) = null(H) = span{1n}.

Let pi ∈ Rd where d = {2, 3} denotes a point that is assigned
to agent i ∈ V . The stacked vector p = [p⊤

1 , p
⊤

2 , . . . , p
⊤
n ]

⊤
∈ Rdn

represents the realization of G in Rd. The pair (G, p) is said to be
a framework (specifically, a formation in the context of formation
control) of G in Rd. By introducing the matrix H̄ := H ⊗ Id×d ∈

Rdm×dn, one can construct the relative position vector z as follows

z = H̄p (1)

where z = [z⊤

1 , z
⊤

2 , . . . , z
⊤
m ]

⊤
∈ Rdm, with zk ∈ Rd being the

relative position vector for the vertex pair defined by the kth edge.
Let dkij denote the desired length of edge kwhich links agent i and
j. We further define (for an arbitrary formation)

ekij = ∥pi − pj∥2
− d2kij = ∥zkij∥

2
− d2kij (2)

to denote the squared distance error for edge k. Note we may also
use ek and dk occasionally for notational convenience in the sequel
if no confusion is expected. The squared distance error vector is
denoted by e = [e1, e2, . . . , em]

⊤.
The problem of determining conservation/decay laws studied

in this paper has its origins in the problem of formation control
of rigid shapes. The definition of graph rigidity can be found in
e.g. Hendrickson (1992). Define Z(z) = diag(z1, z2, . . . , zm) ∈

Rdm×m. With this notation at hand, we consider the smooth dis-
tance map rG : Rdn

−→ Rm, rG(p) = (∥pi − pj∥2)(i,j)∈E =

Z⊤z. A useful tool to study graph rigidity is the rigidity matrix,
which is defined as the Jacobian matrix R(p) =

1
2∂rG(p)/∂(p) =

Z(z)⊤H̄ ∈ Rm×dn. We refer the readers to Hendrickson (1992)
for applications of rigidity matrix on characterizing infinitesimal
rigidity of a framework. We note that the results in this paper
do not depend on any rigidity assumption of a target formation
shape.

2.2. Motion equations: single-integrator formation system

Most papers (see e.g. Anderson & Helmke, 2014; Krick et al.,
2009; Oh & Ahn, 2014) on rigid formation control have considered
the following formation control system modelled by a single inte-
grator

ṗi = −

∑
j∈Ni

(∥pi − pj∥2
− d2kij )(pi − pj), i = 1, . . . , n (3)

which defines the steepest descent gradient flow of the distance
potential function

V (p) =
1
4

∑
(i,j)∈E

(∥pi − pj∥2
− d2kij )

2. (4)

In a compact form, we can rewrite (3) as

ṗ(t) = −∇pV = −R⊤(z)e(z) (5)
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