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a b s t r a c t

This article presents a novel class of control policies for networked control of Lyapunov-stable linear
systemswith bounded inputs. The control channel is assumed to have i.i.d. Bernoulli packet dropouts and
the system is assumed to be affected by additive stochastic noise. Our proposed class of policies is affine
in the past dropouts and saturated values of the past disturbances. We further consider a regularization
term in a quadratic performance index to promote sparsity in control. We demonstrate how to augment
the underlying optimization problem with a constant negative drift constraint to ensure mean-square
boundedness of the closed-loop states, yielding a convex quadratic program to be solved periodically
online. The states of the closed-loop plant under the receding horizon implementation of the proposed
class of policies are mean square bounded for any positive bound on the control and any non-zero
probability of successful transmission.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

An ever-increasing number of modern control technologies re-
quires remote computation of control values that are then trans-
mitted to the actuators over a network. Examples include heat,
ventilation, and air-conditioning systems (HVAC) (Afram & Janabi-
Sharifi, 2014; Kelman& Borrelli, 2011; Oldewurtel, Jones, Parisio, &
Morari, 2014; Parisio, Varagnolo, Risberg, Pattarello,Molinari, & Jo-
hansson, 2013) and cloud-aided vehicle control systems (Alessan-
dretti, Aguiar, & Jones, 2015; Li, Kolmanovsky, Atkins, Lu, & Filev,
2015; Li, Kolmanovsky, Atkins, Lu, Filev, & Michelini, 2014; Ogitsu
& Omae, 2015). In all such systems, a crucial role is played by the
transmission channel and the communication protocol employed
for the transmission of control commands. Due to fading and inter-
ference, the transmitted control commandsmay be delayed or lost,
thereby affecting both qualitative and quantitative properties of
the system. Since in networked systems rate limited channels are
shared among various devices, sparse controls are also desirable
and tractability is essential for the implementation. Moreover,
from an operational stand point, in almost all practical applications
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there are hard constraints on the controls, and standard control
design methods do not apply directly. Furthermore, since stability
is one of the most desirable features, it is important to guaran-
tee stability in the context of imperfect communication channel,
stochastic noise and bounded controls. This article proposes a
sparse, computationally tractable, constrained and stabilizing net-
worked control method for stochastic systems based on predictive
control techniques.

Predictive control techniques provide tractable solutions to
constrained control problems byminimizing some suitably chosen
performance index over a finite temporal horizon via an itera-
tive procedure. Based on the choice of the performance index, in
context of stochastic systems, these techniques are classified as
certainty-equivalent (CE) and stochastic; see Fig. 1. CE approaches
do not take advantage of the available statistics of the uncertain-
ties; here only the nominal plant model is considered and the
control selection procedure is over open loop input sequences. CE
techniques are typically implemented over networks with help of
a buffer and a smart actuator; the technique is commonly known
as packetized predictive control (PPC) (Quevedo & Nešić, 2012). In
PPC, the time stamped sequences containing the future values of
the control are transmitted at each time instant, and the success-
fully received sequences are saved in a buffer at the actuator. In
case of dropouts, the most recent value of the control taken from
the buffer is applied to the plant. PPC, in this way, compensates
the effect of dropouts, but the controller is itself deterministic,
i.e., the performance index does not incorporate the effect of
unreliable communication and additive process noise. Thus, it is
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quite intuitive, and has been argued in Quevedo,Mishra, Findeisen,
and Chatterjee (2015) with help of numerical experiments, that a
suitably chosen stochastic performance index compensating the
effect of uncertainty propagation can outperform PPC.

Stochastic approaches incorporate the effects of uncertainties
in predicted performance by considering the expected value of the
cost per sample path in stochastic systems, and controlling with
the help of policies as opposed to open-loop sequences. Typically,
such policies are parametrized in some convenient way, and the
cost is minimized over the associated set of decision variables.1
It is well known that feedback of past additive disturbances leads
to convex problems, whereas the state feedback approach leads to
non-convexity in the set of decision variables (Goulart, Kerrigan,
& Maciejowski, 2006). In order to obtain a convex set of feasible
decision variables, disturbance feedback approaches have been
studied extensively (Ben-Tal, Goryashko, Guslitzer, & Nemirovski,
2004; Garstka & Wets, 1974; Goulart et al., 2006; Guslitser, 2002;
Löfberg, 2003; Van Hessem& Bosgra, 2002). To satisfy hard bounds
on the control, saturated values of past disturbances are used
in Hokayem, Chatterjee, and Lygeros (2009). This saturated dis-
turbance feedback policy is applied to networked systems with
sufficient control authority in Chatterjee, Amin, Hokayem, Lygeros,
and Sastry (2010) and was later generalized to any positive bound
on the control in our work (Mishra, Chatterjee, & Quevedo, 2016).
We demonstrated in our recent conference contribution (Mishra,
Quevedo, & Chatterjee, 2016) that in the absence of additive noise,
the parametrization relative to past dropouts also leads to convex
problems and outperforms approaches that merely minimize over
open loop input sequences. This suggests that a parametrization
relative to both past dropouts and past disturbances leads to an
improved class of feedback policies.

Stochastic predictive control for networked systems is based
on a suitable choice of the cost function and the class of control
policies, a protocol to decide what the controller will transmit and
what the actuator will do. In our previous contributions (Mishra
et al., 2016; Mishra, Chatterjee, & Quevedo, 2016; Quevedo et
al., 2015), we systematically developed a class of stochastic pre-
dictive control techniques for networked systems. We proposed
transmission protocols in Mishra et al. (2016) to answer what
the controller should transmit and what the actuator should do
under the class of feedback policies adopted from (Hokayem et
al., 2009). Stochastic approaches proposed so far (Hokayem et al.,
2009; Mishra et al., 2016; Mishra et al., 2016; Mishra, Chatterjee,
& Quevedo, 2017; Quevedo et al., 2015) neither consider commu-
nication effects in feedback policies nor generate sparse control
vectors. In this article, we propose an affine dropout and satu-
rated disturbance feedback policy for stochastic systems controlled
over unreliable and rate limited channels. Here, going beyond our
earlier works, we focus on control-communication co-design by
employing a sparsity promoting optimization program. We utilize
the ideas of compressed sensing (Elad, 2010) as in Bhattacharya
and Başar (2011); Nagahara, Quevedo, and Ostergaard (2014). In
Bhattacharya and Başar (2011), a sparsity based feedback system
for the nominal plant model is presented and in Nagahara et
al. (2014) sparse controls are designed for networked systems
in absence of process noise, by exploiting a sparsity promoting
regularization term, namely the ℓ1-norm of the control vector. In
the present work, we employ the mixed induced ℓ1/ℓ∞ norm for
the regularization term in presence of the feedback policy. To the
best of our knowledge, this is the first work where the effects
of both the process noise and the dropouts are considered in a

1 Notice that the optimization over open-loop input sequences does not give
optimal performance in the presence of uncertainties (Kumar & Varaiya, 1986
pp. 13–14), and therefore, optimization over feedback policies is preferred for
stochastic systems.

Fig. 1. The approach proposed in the present article extends the results of stochastic
predictive control (SPC) as proposed in Mishra et al. (2016) by incorporating
communication imperfection models and protocols explicitly into the controller
design. In particular, past dropouts are considered in the feedback policy to formu-
late an sparsity-promoting optimization program. Here, PPC stands for packetized
predictive control as described in Quevedo and Nešić (2012).

feedback policy, sparsity in control is promoted, and stochastic
stability is guaranteed.

Our main contributions in this article are as follows:

• We propose a policy affine in past dropouts and saturated
disturbances for a finite horizon optimal control problem.
The resulting problem is shown to be convex and therefore
numerically tractable.

• Stability constraints are incorporated into the underlying
optimal control problem. For any positive bound on the
control and for any non-zero successful transmission proba-
bility, these constraints ensuremean square boundedness of
the system states for the largest class of linear systems with
disturbances that are currently known to be stabilizable
with bounded controls.

• We introduce a regularization term in the objective func-
tion of the underlying optimal control problem to promote
sparsity in time of the applied controls. Sparsity of the con-
trol commands in time is useful to reduce communication
through shared channels, and increases the relaxation time
for the actuator.

• The objective function design is capable to incorporate the
effects of communication channel and also control policy.
This takes into account all sources of randomness in the
considered networked control system, see Fig. 2.

This article exposes as follows: In Section 2 we establish no-
tation and definitions of the plant and its properties. In Section
3 we present elementary aspects of constrained optimal control
problems for stochastic systems. Our proposed class of feedback
policies is presented in Section 4. We have introduced the sparsity
promoting optimal control problem in Section 5. Implementation
of the stabilizing feedback policy over networks is discussed in
Section 6 and the computational aspects in Section 7. In Section
8, we discuss stability issues and present stability constraints for
the proposed control algorithm. We validate our results with help
of numerical experiments in Section 9. We conclude in Section
10. The proofs of our main results are documented in appendix
Appendix A in consolidated manner.

Our notations are standard. We let R denote the real numbers
and N denote the positive integers. The set of the non-negative
reals and non-negative integers is denoted byR⩾0 andN0, respec-
tively. For any sequence (sn)n∈N0 taking values in some Euclidean
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