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We design two closely related state feedback adaptive control laws for stabilization of a class of 2 x 2
linear hyperbolic system of partial differential equations (PDEs) with constant but uncertain in-domain
and boundary parameters. One control law uses an identifier, while the other is based on swapping design.
We establish boundedness of all signals in the closed loop system, pointwise in space and time, and

convergence of the system states to zero pointwise in space. The theory is demonstrated in simulations.
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1. Introduction
1.1. Background

We willin this paper consider systems on the form of 2 x 2 linear
hyperbolic partial differential equations (PDEs), which can be used
to model for instance traffic flow (Goatin, 2006) and pressure and
flow profiles in oil wells (Landet, Pavlov, & Aamo, 2013). Since
equations of this type can be used to model a vast range of different
physical systems, extensive research regarding control of this kind
of systems have been performed, and we list control Lyapunov
functions (Coron, d’Andréa Novel, & Bastin, 2007), Riemann invari-
ants (Greenberg & Tsien, 1984) and frequency approaches (Litrico
& Fromion, 2006) to name a few.

The pioneering backstepping approach presented in Liu (2003)
for stabilization of partial differential equations of the parabolic
type, has in recent years shown to be quite useful and a general
framework for analysis of PDEs. The key ingredient of this approach
is the introduction of an invertible Volterra-like transformation
that maps the system to be investigated into an auxiliary system
designed to possess some desirable stability properties. Due to the
invertibility of the transformation, the stability properties of the
two systems are the same.

The first use of backstepping to hyperbolic systems was pre-
sented in Krsti¢ and Smyshlyaev (2008b), where among other
applications, hyperbolic PDEs were used to model actuator and

* The work of H. Anfinsen was funded by VISTA - a basic research program in
collaboration between The Norwegian Academy of Science and Letters, and Statoil.
The material in this paper was not presented at any conference. This paper was
recommended for publication in revised form by Associate Editor Rafael Vazquez
under the direction of Editor Miroslav Krstic.

E-mail addresses: henrik.anfinsen@ntnu.no (H. Anfinsen), aamo@ntnu.no
(0.M. Aamo).

https://doi.org/10.1016/j.automatica.2017.09.020
0005-1098/© 2017 Elsevier Ltd. All rights reserved.

sensor delays in ordinary differential equations. Extensions of
the backstepping technique to second order hyperbolic systems
were presented in Smyshlyaev, Cerpa, and Krsti¢ (2010), and
in Vazquez, Krsti¢, and Coron (2011) to 2 x 2 coupled linear
hyperbolic PDEs. Explicit non-adaptive controllers for a subclass
of the systems covered in Vazquez et al. (2011) were also offered
in Vazquez and Krsti¢ (2014).

Adaptive stabilization of PDEs with unknown system parame-
ters is a field that is well-established in the case of parabolic PDEs,
with contributions like Krsti¢ & Smyshlyaev (2008a); Smyshlyaev
& Krsti¢ (2007a, b, 2010). Material regarding adaptive control of
hyperbolic PDEs, however, is currently limited. The first result was
presented in Bernard and Krsti¢ (2014), where an adaptive output
feedback control law was derived for a single hyperbolic partial-
integro differential equation with non-local source terms, while a
subproblem of this was presented in Xu and Liu (2016) offering a
full-state feedback solution. Recently, state feedback stabilization
of coupled 2 x 2 linear hyperbolic systems of PDEs with uncertain
in-domain coefficients was solved in Anfinsen and Aamo (2016a,
b) using an identifier and swapping design, respectively. Bound-
edness and square integrability in the L,-sense of the states were
established, while the important result of convergence of the states
to zero was not established. In the present paper, boundedness,
square integrability and convergence to zero of system states
pointwise in space are provided, thereby completing the missing
aspects of Anfinsen and Aamo (2016a, b). Another minor extension
is provided by considering the boundary parameters unknown in
addition to the in-domain coefficients considered in Anfinsen and
Aamo (20164, b). A significant drawback of the result, limiting its
practical value, is the need for full state measurements. Full state
measurements are rarely available in practice, however, for the
particular problem motivating the present work, they can be con-
sidered available in an approximate sense. When drilling oil wells,
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it is important to control pressure accurately in the well. The main
obstacle to accurate modelling of the flow dynamics in the well is
the uncertainty of friction parameters, which appear as coupling
terms in the domain of the hyperbolic PDE. Emerging technology,
referred to as wired pipe, allows for distributed sensing along the
drill-pipe throughout the well. Sensors can be installed at every
pipe connection, about 30 m apart, thereby providing an approxi-
mate measurement of the distributed state of the PDE. That being
said, solving the output feedback problem is the ultimate goal, and
is a topic of our current research.

1.2. Paper structure

In Section 2, we formally pose the control problem to be inves-
tigated. An adaptive control law based on an identifier is presented
in Section 3. The control law is formally stated as Theorem 4. Then,
in Section 4, another control law based on swapping design is
presented, and the control law is formally stated as Theorem 7.
Boundedness and square integrability of all states in the closed
loop system in the L,-sense are proved for both controllers, and
pointwise boundedness, square integrability and convergence to
zero of the system states are also proved. The performance of
the controllers is demonstrated in simulations in Section 5, while
Section 6 offers some concluding remarks, and lists some pros and
cons regarding the two proposed controllers.

1.3. Notation

For a time-varying, real signal f(t), the following vector spaces
are used

o0 ]
fecL,s (/ |f(t)|pdt) < 00 (1)
0
for p > 1 with the particular case
f € Lo < suplf(t)| < oo. (2)
t>0

For the (possibly time-varying) vector signal u(x) defined for 0 <
x < 1, we introduce the following integral operator

I[u] = fl e™u(x)dx (3)

with the c(ljerived norm

lullg = I, [u"u] = /1 e™u” (x)u(x)dx. (4)
0

The operator (3) is linear and has the property

20, [uwy] = e"u?(1) — u?(0) — allull. (5)

The norm ||u||, is equivalent to the standard L, norm, in the sense
that there exist positive constants kq, k, so that

killulle < llull < kalulla, (6)

and also that ||u|| = ||u||o. Moreover, for the sum of norms of u and
v the shorthand notation

llu, vlf = flull + vl (7)

is used. Lastly, we will in subsequent sections often omit writing
the argument in time, so that e.g. u(x) = u(x, t) and ||z|| = ||z(¢)]|.

2. Problem description

We consider systems on the form of 2 x 2 linear hyperbolic
partial differential equations with constant in-domain coefficients.

These type of systems were also investigated (Vazquez & Krstic,
2014), and are on the form

Ur(x, t) + Aug(x, t) = cu(x, t) + cov(x, t) (8a)
ve(x, t) — puy(x, t) = csu(x, t) + cav(x, t) (8b)
u(0, t) = qu(0, t) (8c)
v(1,t) = U(t) (8d)

defined for 0 < x < 1,t > 0, where u, v are the system states, and

O<AeR, O<pueRr (9)

are known transport speeds while the coefficients

€1,€62,63, 64, J€ER (10)

are unknown. However, we assume we have some bounds on c;,
i = 1...4 and q. That is, we are in possession of some positive
constants ¢;,i = 1...4 and g so that

gl <c, i=1...4, g/ =q. (11)

These assumptions merely accommodate the use of the projection
operator (see Appendix A for the definition and properties) to limit
the parameter estimates, and do not restrict the class of systems (8)
considered since the bounds are arbitrary. Finally, we assume the
initial states u(x, 0) = ug(x), v(x, 0) = vo(x) satisfy

Ug, Vg € Ly. (12)

The goal is to design a state feedback adaptive control law U that
achieves regulation of the system states u and v to zero point-
wise in space and time. Moreover, all additional signals should be
bounded.

3. Adaptive control using an identifier
3.1. Introduction

In identifier-based design, a dynamical system - referred to as
an identifier - is introduced. The identifier is usually a copy of
the system dynamics with certain injection gains added for the
purpose of making the adaptive laws integrable. Lyapunov theory
is then used to derive adaptive laws, and also prove that the error
between the system states and identifier states is bounded. The
backstepping technique is used for controller design and to map
the identifier into a target system for which stability analysis is
easier. Boundedness of the identifier is then proved using the
target system. Due to invertibility of the backstepping transform
and the estimation error also being bounded, the original system
states are bounded as well. An identifier is sometimes termed an
observer, although its purpose is parameter estimation and not
state estimation.

3.2. Identification using an identifier

Consider the identifier

3y (x) + Al (x) = " (b1 + per ()l |I° (13a)
3D1(x) — D1 (x) = @ ()ba + per (x| | (13b)
L qu(0) + u(0)(0)
1(0) = W (13¢)
v(1)=U (13d)
for some design gain p > 0, and where
e1(x) = u(x) — i4(x) (14a)
€1(x) = v(x) — D1(x) (14b)



Download English Version:

https://daneshyari.com/en/article/4999584

Download Persian Version:

https://daneshyari.com/article/4999584

Daneshyari.com


https://daneshyari.com/en/article/4999584
https://daneshyari.com/article/4999584
https://daneshyari.com

