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a b s t r a c t

This paper considers a gossip approach for finding a Nash equilibrium in networked games on graphs,
where a player’s cost function may be affected by the actions of any subset of players. An interference
graph illustrates the partially-coupled cost functions, i.e., the asymmetric strategic interaction and
information requirements. An algorithm is proposed whereby players make decisions based only on the
estimates of their interfering players’ actions. Given the interference graph (not necessarily complete),
a communication graph is designed so that players exchange only their required information. When
the interference graph is sparse, the algorithm can offer substantial savings in communication and
computation. Almost sure convergence to a Nash equilibrium is proved for diminishing step sizes. The
effect of the second largest eigenvalue of the expected communication matrix on the convergence rate is
quantified.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Distributed seeking of Nash equilibria in networked games has
received considerable attention in recent years, (Stankovic, Johans-
son, & Stipanovic, 2012). A networked game can be represented by
a graphical modelwhere the cost function of each player is indexed
as a function of player’s own action and those of his neighbours. A
graphical game is succinctly represented via an undirected graph
called interference graph, where players are marked by vertices
and interferences by edges, (Nisan, Roughgarden, Tardos, & Vazi-
rani, 2007; Kearns, Littman, & Singh 2001). There are many real-
world applications that motivate us to generalize the Nash seeking
problem to a graphical game setup, (Chen & Huang, 2012). For
instance, the collection of transmitters and receivers in a wireless
data network, (Alpcan & Başar, 2004), or the set of channels in
an optical network, (Pavel, 2012), can be described by a graphical
model.

Literature review. In this work we are interested in developing
a locally distributed algorithm for Nash equilibrium seeking in
graphical games, where cost functions are partially-coupled. The
idea of a graphical game has been used in various areas. In con-
gestion games, Tekin, Liu, Southwell, Huang, and Ahmad (2012)
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consider a conflict graph to specify players that cause congestion to
each other. In Abouheaf and Lewis (2014), graphical games are con-
sidered in the context of dynamical games. A stronger definition
of an interactive Nash equilibrium is used to guarantee a unique
Nash equilibrium.Moreover, the information flow is described by a
communication graph which is identical to the interference graph.
In an economic setting, Bramoullé, Kranton, and D’Amours (2014)
draw attention to the problem of ‘‘who interacts with whom’’ in a
network and to the importance of communicationwith neighbour-
ing players. The effect of local peers on increasing the usage level
of consumers is addressed in Candogan, Bimpikis, and Ozdaglar
(2012). Using word-of-mouth communication, players form their
opinions about the quality of a product and improve their pur-
chasing behaviour. The problem of finding a Nash equilibrium in
generalized convex games where the interference graph is not
necessarily complete is studied in Zhu and Frazzoli (2016). However,
the communication graph is identical to the interference graph. A
connected communication graph is considered in Koshal, Nedic,
and Shanbhag (2012) for the special class of aggregative games. The
coupling to others is via a common aggregated variable, hencewith
a complete interference graph. A larger class of convex games is
considered in Salehisadaghiani and Pavel (2016), still with a com-
plete interference graph. An asynchronous gossip-based projected-
gradient algorithm is proposed over a connected communication
graph.

Contributions. In this paper, we consider a class of networked
games on graphs where the interference graph is not necessarily
complete, and the connected communication graph is a subset of
the interference graph.We adapt the algorithm in Salehisadaghiani
and Pavel (2016) to account for partial-coupling. As opposed to
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Salehisadaghiani and Pavel (2016), where each player keeps full
local estimates of all others’ actions, herein each player main-
tains an estimate of only the actions of players interfering with
him. This can greatly reduce the communication and computation
overhead when the interference graph is sparse. However, due to
non-uniformity in the size of estimates, the communication graph
needs to be designed such that each player obtains all his required
information from his communication neighbours. In this sense, we
show that there exists a lower bound for the communication graph.
Inspired by Boyd, Ghosh, Prabhakar, and Shah (2006) and Duchi,
Agarwal, and Wainwright (2012), we show that the convergence
time depends on the second largest eigenvalue of the expected
communicationmatrix, hence depends on the communication and
interference graphs. Our techniques are also similar to those used
in the literature on distributed optimization (Johansson, 2008;
Nedic, 2011; Nedic &Ozdaglar, 2009). However, there are technical
challenges due to the game context. In distributed optimization,
all agents minimize an aggregate cost function with respect to
a common optimization variable. In a game setup, each player
controls only his own action, which is an element of the full
decision vector.Moreover, his cost function depends on the actions
of a subset of other players. This translates into asymmetry and
non-uniformity in players’ data size and overall data exchange.
We circumvent these issues by introducing generalized weight
matrices and exploiting their properties to prove convergence to
Nash equilibrium.

The paper is organized as follows. Problem statement and as-
sumptions are given in Section 2. The algorithm is described in
Section 3 and its convergence is shown in Section 4. The conver-
gence rate is analysed in Section 5 and simulation results are given
in Section 6.

1.1. Notations

All vector norms ∥ · ∥ are Euclidean. The cardinality of a set A
is denoted by |A|. The Euclidean projection of x onto the set K is
denoted by TK [x]. We denote by [ai]i=1,...,N the N × 1 vector with
ai as the ith entry. We denote by 1N the N × 1 all-ones vector and
by 0N the all-zeros N × 1 vector. We use ei to denote a unit vector
whose ith element is 1 and the others are 0. The N × N identity
matrix is denoted by IN .

The following are from Godsil and Royle (2013) and Goddard
and Kleitman (1993). An undirected graph G is a pair (V , E) with V
a set of vertices and E ⊆ V ×V a set of edges such that for i, j ∈ V , if
(i, j) ∈ E, then (j, i) ∈ E. The degree of vertex i, denoted by degG(i),
is the number of edges connected to i. A path is a sequence of edges
which connects a sequence of vertices. A graph is connected if
there is a path between every pair of vertices. An adjacency matrix
A = [aij]i,j∈V is a matrix with aij = 1 if (i, j) ∈ E and aij = 0
otherwise. A subgraph H of G is a graph whose vertices and edges
are a subset of the vertex and edge set of G. A supergraph H of G is
a graph of which G is a subgraph. H is a spanning subgraph of G, if
it contains all the vertices of G. A triangle-free spanning subgraph
H of G is a subgraph in which no three vertices form a triangle
of edges. H is a maximal triangle-free spanning subgraph of G if
adding an edge from G − H to H creates only one triangle.

2. Problem statement

Consider a game between a set of players V = {1, . . . ,N} in
a network. Each player i ∈ V has a real-valued cost function Ji,
which may be affected by the actions of any number of players. To
illustrate the strategic interaction between agents and the partially
coupled cost functions, we define an interference graph, denoted
by GI (V , EI ). In general GI is not complete; the edge set EI marks
player pairs that interfere one with another. We denote by NI (i) :=

{j ∈ V |(i, j) ∈ EI} the set of neighbours in GI of player i, and
ÑI (i) := NI (i) ∪ {i}.

Assumption 1. The interference graph GI is connected and undi-
rected.

Let Ωi ⊂ R denote player i’s action set, and Ω =
∏

i∈VΩi ⊂ RN

all players’ action set, where
∏

is the Cartesian product. Player i’s
cost function is Ji : Ω i

→ R, where Ω i
=

∏
j∈ÑI (i)

Ωj ⊂ R|ÑI (i)| is
the action set of players interfering with him. Let xi ∈ Ωi be player
i’s action, xi

−i ∈ Ω i
−i :=

∏
j∈NI (i)

Ωj the other players’ actions which
affect his cost, and xi = (xi, xi−i) ∈ Ω i. Let x = (xi, x−i) ∈ Ω be
all players’ action profile, where x−i ∈ Ω−i :=

∏
j∈V/{i}Ωj denotes

all other players’ actions except i. The game thus defined on GI is
denoted by G(V , Ωi, Ji,GI ). For any given xi

−i ∈ Ω i
−i, each player i

aims tominimize his own cost function selfishly to find an optimal
action,

minimize
yi

Ji(yi, xi−i)

subject to yi ∈ Ωi.
(1)

Note that there are N separate simultaneous optimization prob-
lems, each run by a particular player i.

Definition 1. Consider an N-player game G(V , Ωi, Ji,GI ), each
player i minimizing the cost function Ji : Ω i

→ R. A vector
x∗

= (x∗

i , x
∗

−i) ∈ Ω is called a Nash equilibrium of this game if
for every given xi∗

−i := [x∗

j ]j∈NI (i) ∈ Ω i
−i,

Ji(x∗

i , x
i∗
−i) ≤ Ji(xi, xi∗−i) ∀xi ∈ Ωi, ∀i ∈ V . (2)

Definition 1 is a restatement of a Nash equilibrium definition so
that when GI is not complete, Ji(xi, x−i), Ji(x∗

i , x
∗

−i) are replacedwith
Ji(xi, xi−i), Ji(x

∗

i , x
i∗
−i). We make the following assumptions.

Assumption 2. For every i ∈ V , the action set Ωi is a non-
empty, compact and convex subset ofR. Ji(xi, xi−i) is a continuously
differentiable function in xi, jointly continuous in xi and convex in
xi for every xi

−i.

The compactness of Ω implies that ∀i ∈ V and xi ∈ Ω i,

∥∇xi Ji(x
i)∥ ≤ C, for some C > 0. (3)

Assumption 3. The pseudo-gradient F : Ω → RN , F (x) :=

[∇xi Ji(x
i)]i∈V , is strictly monotone, i.e.,

(F (x) − F (y))T (x − y) > 0 ∀x, y ∈ Ω, x ̸= y. (4)

Assumptions 2 and 3 imply that Nash equilibrium exists and is
unique.

Assumption 4. For every i ∈ V , ∇xi Ji(xi, u) is Lipschitz continuous
in xi, for every fixed u ∈ Ω i

−i, i.e.,

∥∇xi Ji(xi, u) − ∇xi Ji(yi, u)∥ ≤ σi∥xi − yi∥ ∀xi, yi ∈ Ωi. (5)

for some σi > 0. Moreover, ∇xi Ji(xi, u) is Lipschitz in u with
Lipschitz constant Li > 0 for every fixed xi ∈ Ωi.

Assumption 4 implies that F (x) is Lipschitz continuous in x ∈ Ω

with ρ =

√∑
i∈Vρ2

i , ρ
2
i = 2L2i + 2σ 2

i .
We assume that Ji and the action set Ω i are available to player

i. Thus every player knows which other players’ affect his cost
function, but not his actions.Weassume that eachplayermaintains
an action estimate of only his interfering players according to GI ,
and that players exchange information over a communication graph
GC (V , EC ). As no unnecessary data needs to be exchanged, this can
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