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a b s t r a c t

This article studies the strong stability of scalar difference equations of continuous time in which
the delays are sums of a number of independent parameters τi, i = 1, 2, . . . , K . The characteristic
quasipolynomial of such an equation is a multilinear function of e−τis. It is known that the characteristic
quasipolynomial of any difference equation set in the form of one-delay-per-scalar-channel (ODPSC)
model is also in such a multilinear form. However, it is shown in this article that some multilinear
forms of quasipolynomials are not characteristic quasipolynomials of any ODPSC difference equation
set. The equivalence between local strong stability, the exponential stability of a fixed set of rationally
independent delays, and the stability for all positive delays is shown, and relations with the structured
singular value problemare presented. A procedure to determine strong stability in the special case of up to
three independent delay parameters in finite steps is developed. This proceduremeans that the structured
singular value problem in the case of up to three scalar complex uncertain blocks can be solved in finite
steps.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

This article studies the stability problem of systems with char-
acteristic quasipolynomial,

∆(s) = 1 +

K∑
m=1

∑
1≤i1<i2<···<im≤K

ai1 i2...ime
−(τi1+τi2+···+τim )s

, (1)

where τi, i = 1, 2, . . . , K are independent parameters, and ai1 i2...im
are real coefficients. For K = 1, 2 and 3, ∆(s) in (1) becomes

∆(s) = 1 + a1e−τ1s, (2)

∆(s) = 1 + a1e−τ1s + a2e−τ2s + a12e−(τ1+τ2)s, (3)
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∆(s) = 1 + a1e−τ1s + a2e−τ2s + a3e−τ3s

+ a12e−(τ1+τ2)s + a13e−(τ1+τ3)s

+ a23e−(τ2+τ3)s + a123e−(τ1+τ2+τ3)s, (4)

respectively. Obviously, ∆(s) in (1) is the characteristic quasipoly-
nomial of the difference equation of continuous time,

y(t) +

K∑
m=1

∑
1≤i1<i2<···<im≤K

ai1 i2...imy(t − τi1 − τi2 − · · · − τim )

= 0. (5)

As ∆(s) in (1) is a multilinear function of e−τis, i = 1, 2, . . . , K ,
it is closely related to the following form of one-delay-per-scalar-
channel (ODPSC) difference equation set,

yk(t) =

K∑
j=1

dkjyj(t − τj), k = 1, 2, . . . , K , (6)

where

yk(t) ∈ R, dkj ∈ R, k, j = 1, 2, . . . , K .

Indeed, the characteristic function of (6) is

∆1(s) = det(I − DE) = 0, (7)
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where

D = (dij)K×K ,

E = diag(e−τ1s, e−τ2s, . . . , e−τK s).

An expansion of the determinant shows that ∆1(s) is indeed a
multilinear function of e−τis, i = 1, 2, . . . , K in the form of (1).
Hale and Verduyn Lunel (1993) in Section 9.6 illustrated through
an example how to rewrite the difference equation of the form (5)
to the ODPSC difference equation set of the form (6) for the case of
K = 2. Unfortunately, while such rewriting is always possible for
K ≤ 2, it may not be possible in some cases with K ≥ 3 as will
be shown later in this article. Therefore, studying (1) indeed has
independent interest.

Difference equation of continuous time, in addition to its inde-
pendent interest, also plays an important role in the theory of time-
delay systems of neutral type (Gu, 2012; Hale & Verduyn Lunel,
1993). Especially, a necessary condition for the exponential stabil-
ity of the coupled differential–difference equation (8)–(9) below is
the exponential stability of the associated difference equation (6).

ẋ(t) = Ax(t) +

K∑
j=1

Bjyj(t − τj), (8)

yk(t) = Ckx(t) +

K∑
j=1

dkjyj(t − τj), k = 1, 2, . . . , K , (9)

where

x(t) ∈ Rn, yk(t) ∈ R.

Similarly, the exponential stability of the difference equation
(5) is a necessary condition for the exponential stability of the
differential–difference equations of neutral type studied in Nagh-
naeian and Gu (2013) for K = 2 and Gu & Zheng (2014) for K = 3.
Time-delay systems of neutral type may arise in natural systems
(Hale & Verduyn Lunel, 1993), or as a result of feedback control
such as Smith predictor (Palmor, 1980) and discrete implemen-
tation of distributed-delay feedback control (Michiels, Mondié,
Roose, & Dambrine, 2004; Mirkin, 2004; Mondié, Dambrine, &
Santos, 2002; Zhong, 2004).

The stability of difference equations of continuous time has
been studied using the Lyapunov functional approach (Pepe, 2003;
Shaikhet, 2011) and frequency domain approach (Avellar & Hale,
1980; Hale & Verduyn Lunel, 2002; Henry, 1974). This article uses
the frequency domain approach. Similar to systems described by
differential equations, a system described by difference equation
(5) is exponentially stable if and only if all its characteristic roots
sk, k = 1, 2, . . . , i.e., the solutions of the equation

∆(s) = 0, (10)

satisfy Re(sk) ≤ −ϵ for some ϵ > 0.
In this article, we concentrate on the strong stability of the

system (1). In other words, we are interested in the stability of (1)
when the delay parameters τ1, τ2, . . . , τK are subject to indepen-
dent, although arbitrarily small, deviation from the nominal values.
The surprisingly significant impact of such small deviation was
first documented by Henry (1974) and Melvin (1974). Our results
are analogous to the one given by Hale and Verduyn Lunel (1993)
and Hale and Verduyn Lunel (2002). For systems with up to three
independent delays, a procedure is derived that can check strong
stability in finite steps.

As shown in Gu (2012), the strong stability problem of such dif-
ference equation is closely related to the structured singular value
problem (Doyle, 1982; Doyle,Wall, & Stein, 1982; Packard & Doyle,
1993; Zhou, Doyle, & Glover, 1996). Therefore, the procedure de-
rived here means that we have obtained a method to calculate the

structured singular value for up to three scalar complex uncertain
blocks.

The remaining parts of this article is organized as follows. Sec-
tion 2 discusses the relationship between the systems described
by (1) and the ODPSC model described by (7). Section 3 develops
the general theory of strong stability of system (1). These two
sections are very similar to the contents of Ma, Gu, and Choube-
dar (2017). Section 4 presents a method to check strong stability
of the system (1) in finite steps when there are not more than
three independent parameters. Section 5discusses the relationship
between the strong stability problem and the structured singular
value problem. Section 6 provides some numerical examples to
illustrate the developed method.

2. Relations with ODPSC model

From the discussion above, we know that the characteristic
quasipolynomial of the ODPSC form of difference equation set (6)
has the form of (1). However, aswill be shown in Theorem 1 below,
for a given quasipolynomial ∆(s) of the form (1) with K ≥ 3,
it is not always possible to find an ODPSC difference equation
set (6) such that its characteristic function ∆1(s) is equal to ∆(s).
Therefore, it is of independent interest to study the system (1).

Theorem 1. For a given quasipolynomial∆(s) in the form of (1)with
K = 3, there exists a 3 × 3 matrix D such that ∆1(s) given in (7)
satisfies ∆1(s) = ∆(s) if and only if the following inequality holds:

(a12a3 + a13a2 + a23a1 − 2a1a2a3 − a123)2

≥ 4(a1a2 − a12)(a2a3 − a23)(a3a1 − a13). (11)

The above theorem can be found as Theorem 1 in Ma et al.
(2017) with complete proof.

3. Stability conditions

The strong stability condition of (6) can be found in Hale and
Verduyn Lunel (1993) and Hale & Verduyn Lunel (2002) with
appropriate adaption described in Gu (2012). Here we will study
the strong stability of the system (1). For complex numbers δj, j =

1, . . . , K , we allow a slight abuse of notation and write

∆(δ1, . . . , δK )

= 1 +

K∑
m=1

∑
1≤i1<i2<···<im≤K

ai1 i2...imδi1δi2 . . . δim .

Then

∆(e−τ1s, e−τ2s, . . . , e−τK s) = ∆(s).

Theorem 2. The following statements are equivalent:
(i) System (1) is exponentially stable for a given set of rationally
independent parameters τ1 > 0, τ2 > 0, . . . , τK > 0.
(ii) For given nominal parameters τ 0

1 > 0, τ 0
2 > 0, . . . , τ 0

K > 0, and
an arbitrarily small ε > 0, system (1) is exponentially stable for all
positive parameters τ1, τ2, . . . , τK that satisfy

|τj − τ 0
j | < ε, j = 1, 2, . . . , K .

(iii) System (1) is exponentially stable for arbitrary positive parame-
ters τ1 > 0, τ2 > 0, . . . , τK > 0.
(iv)

0 ̸∈ {∆(δ1, δ2, . . . , δK )| |δj| ≤ 1, j = 1, 2, . . . , K }. (12)

(v)

min{∆(δ1, δ2, . . . , δK )|∆ ∈ R, |δj| = 1, j = 1, 2, . . . , K }

> 0. (13)
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