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a b s t r a c t

This article introduces a Tensor Network Kalman filter, which can estimate state vectors that are exponen-
tially large without ever having to explicitly construct them. The Tensor Network Kalman filter also easily
accommodates the case where several different state vectors need to be estimated simultaneously. The
key lies in rewriting the standard Kalman equations as tensor equations and then implementing them
using Tensor Networks, which effectively transforms the exponential storage cost and computational
complexity into a linear one. We showcase the power of the proposed framework through an application
in recursive nonlinear system identification of high-order discrete-time multiple-input multiple-output
(MIMO)Volterra systems. The identification problem is transformed into a linear state estimationproblem
wherein the state vector contains all Volterra kernel coefficients and is estimated using the Tensor
Network Kalman filter. The accuracy and robustness of the scheme are demonstrated via numerical
experiments, which show that updating the Kalman filter estimate of a state vector of length 109 and
its covariance matrix takes about 0.007 s on a standard desktop computer in Matlab.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

After its publication in 1960, the Kalman filter (Kalman, 1960)
was quickly adopted into the Apollo onboard guidance system
(McGee & Schmidt, 1985) and has found many other applications
ever since. The square-root filter is a more numerically stable im-
plementation and was first developed by Potter and Stern (1963).
It replaces the covariance matrix in the Kalman filter equations
by its Cholesky factor, which is better conditioned. Over the next
decade other numerically stable implementations, which also use
Cholesky factors, were developed (Bierman, 1977; Carlson, 1973;
Morf & Kailath, 1975). Extensions of the Kalman filter to nonlinear
models are the Extended Kalman filter (EKF) (Jazwinski, 2007;
Schmidt, 1976), the statistically linearized filter (SLF) (Gelb, 1974)
and the unscented Kalman filter (UKF) (Julier & Uhlmann, 2004;
Julier, Uhlmann, & Durrant-Whyte, 1995). All these filters turn out
to be specific instances of Bayesian filters (Särkkä, 2013),where the
Kalman filter solution emerges from the assumption that both the
dynamic and measurement models are linear Gaussian.
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Kalman filters have been applied in myriad different fields,
with probably the most famous application being in navigational
and guidance systems. Other applications are found in time series
analysis, signal processing and econometrics. The Kalman filter is
inherently limited by the length of the state vector that is to be
estimated. For example, using a Kalman filter to estimate a state
vector with a length nd will quickly become intractable, even for
moderate sizes of n and d. In this article, we explain how Tensor
Networks (Cichocki, 2014; Orús, 2014) enable the estimation of
exponentially long state vectors in a computationally efficient
manner. The main paradigm used in the Tensor Network frame-
work is to represent the exponentially long state vectors and their
corresponding covariance matrices as tensors in a network. These
tensors are called the Tensor Network cores and all computations
of the Kalman filter are performed directly on the cores. We show
in Section 4 that this reduces the computational complexity and
storage cost from O(nd) to O(dn).

One particularly well-suited application of the Tensor Net-
work Kalman filter is the recursive identification of discrete-time
multiple-input-multiple-output (MIMO) Volterra systems (Rugh,
1981; Wiener, Stratton, & Technology, 2013). These nonlinear sys-
tems have been extensively studied and applied in applications
like speech modeling (Mumolo & Francescato, 1993), loudspeaker
linearization (Kajikawa, 2008), nonlinear control (Doyle, Pearson,
& Ogunnaike, 2002), active noise control (Tan & Jiang, 2001), mod-
eling of biological and physiological systems (Korenberg & Hunter,
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1996), nonlinear communication channel identification and equal-
ization (Cheng & Powers, 2001; Fernandes, Mota, & Favier, 2010),
distortion analysis (Wambacq & Sansen, 1998) and many others.
Their applicability has been limited however to ‘‘weakly nonlin-
ear systems’’, where the nonlinear effects play a non-negligible
role but are dominated by the linear terms. This limitation is
not inherent to the Volterra series themselves, as they can also
represent strongly nonlinear dynamical systems, but is due to the
exponentially growing number of Volterra kernel coefficients as
the degree increases. Indeed, assuming a finitememoryM , the dth-
order response of a discrete-time single-input single-output (SISO)
Volterra system is given by

yd(t) =

M−1∑
k1,...,kd=0

hd(k1, . . . , kd)
d∏

i=1

u(t − ki),

where yd(t), u(t) are the scalar output and input at time t respec-
tively and the dth-order Volterra kernel hd(k1, . . . , kd) is described
by Md numbers. For a multiple-input multiple-output (MIMO)
Volterra system with p inputs the situation gets even worse, since
the dth-order Volterra kernel for one particular output is character-
ized by (pM)d numbers. This exponential growth of the number of
kernel coefficients is one particular example of the infamous curse
of dimensionality.

In order to apply the Tensor Network Kalman filter to the prob-
lem of recursive system identification of MIMO Volterra systems,
we first rewrite the MIMO Volterra system as a linear state space
model of the Volterra kernel coefficients. The system identification
problem is in this way converted into a state estimation problem.
The linear state space description of SISO Volterra systems for
the identification of its kernel coefficients has appeared in Weng
and Barner (2006). The curse of dimensionality however limits
the application of their method to low degree Volterra systems.
After having converted the MIMO Volterra system into a linear
state space mode, we present a Tensor Network description of
MIMO Volterra systems (Batselier, Chen, & Wong, 2016). This de-
scription effectively enables the use of a Tensor Network Kalman
filter to solve the state estimation problem. In contrast with the
system identification method described in Batselier et al. (2016),
the Kalman filter approach explicitly takes the effect of measure-
ments noise into account. Furthermore, we derive how the Tensor
Network cores are initialized without the explicit construction of
the prohibitively large mean vectors and covariance matrices. In
short, the main contributions of this article are

• the Kalman filter equations are rewritten as tensor equa-
tions to accommodate for the estimation of multiple state
vectors at once,

• each of the Kalman filter tensor equations are computed
in the Tensor Network format, resulting in a significant
reduction of computational complexity and storage cost,

• the Tensor Network Kalman filter is applied for the recursive
identification of MIMO Volterra systems.

The outline of this article is as follows. In Section 2 we give
a brief overview of important tensor concepts and Tensor Net-
work theory. The Tensor Network Kalman filter is derived in Sec-
tion 3 and its implementation is discussed in Section 4. The MIMO
Volterra Tensor Network framework from Batselier et al. (2016)
is reviewed and the application of the Tensor Network Kalman
filter to the system identification problem is discussed in Section 5.
In Section 6, numerical experiments demonstrate the accuracy
and computational efficiency of the Tensor Network Kalman filter
when applied for recursive MIMO Volterra system identification.
Matlab/Octave implementations of our algorithms are freely avail-
able from https://github.com/kbatseli/TNKalman.

2. Preliminaries

2.1. Tensor basics

Tensors in this article are multi-dimensional arrays that gen-
eralize the notions of vectors and matrices to higher orders. A d-
way or dth-order tensor is denoted A ∈ Rn1×n2×···×nd and hence
each of its entries ai1 i2···id is determined by d indices. We use the
convention that indices start from 1, such that 1 ≤ ik ≤ nk (k =

1, . . . , d). The numbers n1, n2, . . . , nd are called the dimensions
of the tensor. A tensor is cubical if all its dimensions are equal.
For practical purposes, only real tensors are considered. We use
boldface capital calligraphic letters A,B, . . . to denote tensors,
boldface capital lettersA,B, . . . to denotematrices, boldface letters
a, b, . . . to denote vectors, and Roman letters a, b, . . . to denote
scalars. The elements of a set of d tensors, in particular in the
context of Tensor Networks, are denoted A(1),A(2), . . . ,A(d). The
transpose of a matrix A or vector a is denoted AT and aT , respec-
tively. The unit matrix of order n is denoted In. The tensor with
all zero entries is denoted O. We also adopt the Matlab notation
diag(a) for a diagonal matrix with entries ai. Similarly, diag(A)
denotes the diagonal entries of a matrix A.

Good introductions to tensors in scientific computing and signal
processing are Cichocki,Mandic, Phan, Caiafa, Zhou, and Zhao, et al.
(2015) and Kolda and Bader (2009). The work in this article builds
upon the tensor framework described in Batselier et al. (2016), in
which a Tensor Network alternating linear scheme is derived for
the identification of MIMO Volterra systems. Due to space limita-
tion, we refer the reader to the discussion presented in Batselier
et al. (2016) on basic tensor operations. The same notation and
concepts will be used in this article. Additional important tensor
operations for this article that are not described in Batselier et al.
(2016) are given below.

Definition 2.1 (Kolda & Bader, 2009, p. 462 (Khatri–Rao Product)).
Given matrices A ∈ Rn×l,B ∈ Rm×l, then their Khatri–Rao product
A ⊙ B ∈ Rnm×l is defined as the column-wise Kronecker product

A ⊙ B :=
(
A(:, 1) ⊗ B(:, 1), · · · ,A(:, l) ⊗ B(:, l)

)
,

where we used the Matlab-notation A(:, k) to denote the kth col-
umn of the matrix A.

The Khatri–Rao product of twomatricesA,B hence corresponds
with the matrix that contains the column-wise Kronecker product
of A with B. Similarly, an operation will be required where the
Kronecker product is replaced with the outer product.

Definition 2.2. GivenmatricesA ∈ Rn×l,B ∈ Rm×l, then the tensor
A□B ∈ Rn×m×l is defined as the column-wise outer product such
that

A□B(:, :, k) := A(:, k) ◦ B(:, k),

for k = 1, . . . , l and where ◦ denotes the outer product (Kolda &
Bader, 2009, p. 458).

One can obtain A□B from reshaping the matrix A ⊙ B into a
3-way tensor. Nextwewill provide the definition of the tensor Kro-
necker product, but before doing so, we first need to discuss multi-
indices. A d-way tensor A is essentially a collection of numbers
ai1···id , and there are therefore many ways to arrange the entries.
These different arrangements are equivalent with the grouping
of the indices into separate groups. Consider the case where the
first k indices are grouped together into themulti-index [i1i2 · · · ik],
keeping all remaining indices separate. This reduces the order of
the tensor from d to d − k + 1. The multi-index [i1i2 · · · ik] is
converted into a single linear index as

i1 + (i2 − 1)n1 + · · · + (ik − 1)n1 n2 . . . nk−1.
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