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a small set of sensor nodes to discriminate statically and periodically steady states using the Boolean
network model where steady states are often considered to correspond to cell types. In other words, we
seek a minimum set of nodes to discriminate singleton and periodic attractors. We prove that one node
is not necessarily enough but two nodes are always enough to discriminate two periodic attractors by
using the Chinese remainder theorem. Based on this, we present an algorithm to determine the minimum
number of nodes to discriminate all given attractors. We also present a much more efficient algorithm
to discriminate singleton attractors. The results of computational experiments suggest that attractors in
realistic Boolean networks can be discriminated by observing the states of only a small number of nodes.
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1. Introduction

Knowing internal states of complex systems is important for
diagnosing various kinds of artificial, social, and biological systems.
It is particularly important to identify a small set of variables so
that we can reconstruct the system’s complete internal state at any
given time step from time-series data of these variables. In such a
case, the system is called observable. Recent studies on complex
networks revealed relationships between network properties and
the number of sensor nodes corresponding to those variables (Liu,
Slotine, & Barabasi, 2013; Yan, Tsekenis, Barzel, Liu, Slotine, &
Barabasi, 2015). However, existing studies focus on linear systems
and certain types of nonlinear systems. Since biological systems
contain highly nonlinear switch-like components, observability
studies should also be done on systems with discrete components.

The Boolean network (BN) is known as a discrete mathematical
model of gene regulatory networks (Kauffman, 1993) and has been
applied to modeling of various biological systems (Albert & Thakar,
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2014).InaBN, each node corresponds to a gene and takes one of the
two values 0 and 1, where 0 (resp., 1) means that the corresponding
gene is inactive (resp., active). The value of a node at a given time
step is determined according to a regulation rule represented by
a set of Boolean functions. Although there exist several variants,
in a widely used model, the values of network nodes are updated
synchronously by using the Boolean functions and the (global) state
of a network at a given time step is the vector of its node values.
Beginning with any initial state, the system eventually falls into
an attractor, which is classified into two types: a singleton attractor
corresponding to a stable state and a periodic attractor correspond-
ing to a sequence of states that repeats periodically. Attractors are
often considered as cell types: different attractors correspond to
different cell types (Kauffman, 1993). Based on this interpretation,
extensive studies have been done on the distribution and length
of attractors in BNs (Drossel, Mihaljev, & Greil, 2005; Kauffman,
Peterson, Samuelsson, & Troein, 2004; Samuelsson & Troein, 2003).

Although attractors in synchronous BNs are either singleton or
periodic, attractors in asynchronous BNs are more complex. An at-
tractor in an asynchronous BN is a strongly connected component
without outgoing edges in a state transition diagram (Saadatpour,
Albert, & Albert, 2010), which is also called a loose attractor (Har-
vey & Bossomaier, 1997), a complex loop (Garg, Di Cara, Xenarios,
Mendoza, & De Micheli, 2008). and a terminal strongly connected
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component (Fauré, Naldi, Chaouiya, & Thieffry, 2006). If we con-
sider non-linear systems obtained by extending BNs, steady states
may include intermediate states (Mochizuki, 2005). Since such
complex attractors or complex steady states cannot be represented
as sequences of 0-1 vectors and thus are very difficult to handle, we
focus on synchronous BNs in this paper.

Recently, observability of BNs has also been studied (Cheng, Qi,
&Li,2011; Laschov, Margaliot, & Even, 2013; Li, Yang, & Chu, 2015).
However, due to its high nonlinearity, it is impossible in most cases
to observe complete internal states of BNs from a small number
of nodes. For example, Li et al. showed that more than half of the
nodes are required to guarantee the observability of internal states
of all attractors in the Drosophila segment polarity network (Li
et al., 2015). Therefore, we need to consider another approach for
distinguishing the internal states of BNs.

We note here that it is important for medical diagnosis to
identify the type of each cell by observing expression patterns of
a few genes (e.g., biomarkers or marker genes). Therefore, exten-
sive studies have been done to find a small number of marker
genes so that disease types or cell types can be discriminated by
observing expression of these genes (Whitfield, George, Grant, &
Perou, 2006). Furthermore, both gene expression data and network
structure data are utilized to find more reliable marker genes
(Hayashida & Akutsu, 2016). Dynamical gene expression data are
also combined with network structure data in order to find pre-
disease states (Wu, Chen, & Wang, 2014). However, in these stud-
ies, the target types of cells or diseases are mostly limited to those
related with specific diseases. Furthermore, most of these studies
focus on practical aspects and thus it is not guaranteed to find the
minimum set of marker genes. Therefore, in this paper, we consider
the problem of identifying attractors by observing activities (0 or
1) of a small number of nodes using the BN model. In particular,
we focus on finding the minimum number of nodes, by which all
given attractors can be discriminated. We call this problem dis-
crimination of attractors. Although it is computationally intractable
(#P-hard) to enumerate all singleton attractors (Akutsu, Kuhara,
Maruyama, & Miyano, 1998), some algorithms have been devel-
oped to enumerate all singleton attractors for up to moderate
size networks by using network reduction (Veliz-Cuba, Aguilar,
Hinkelmann, & Laubenbacher, 2014) and to enumerate all single-
ton and periodic attractors by using network reduction and stable
motifs (Zafiudo & Albert, 2013). Therefore, it is reasonable to
assume that a set of attractors is given. Furthermore, we can even
assume that this set is given independently of a BN because gene
expression data for each cell type can be experimentally obtained
without knowing the structure of the underlying genetic network.

In this paper, we begin with the discrimination problem for
singleton attractors, and present an algorithm that works in poly-
nomial time of the number of genes (n) and the exponential factor
only depends on the number of attractors (m). Next, we present a
key result, which states that any pair of (singleton and periodic)
attractors can be discriminated by observing time-series data of
two nodes, by making use of the Chinese Remainder Theorem.
This result gives an upper bound of the number of sensor nodes to
discriminate attractors. It also leads to development of an efficient
algorithm whose polynomial degree depends only on the mini-
mum number of sensor nodes. Then, we perform computational
experiments using artificially generated BNs and BN models of real
biological systems. Finally, we conclude with future work.

Note that Qiu et al. studied the same discrimination prob-
lem (Qiu, Cheng, Ching, Jiang, & Akutsu, 2015). However, in their
work, a very restricted model was considered: periodic attractors
were not considered and discrimination nodes had to be selected
from consecutive nodes. The latter restriction is too strong and is
not appropriate from a biological viewpoint. Furthermore, such a
restricted problem can be trivially solved in polynomial time be-
cause it is enough to examine all possible O(n?) intervals (although

Fig. 1. Example of (a) BN and (b) its state transition diagram. T-type arrow in (a)
means that the input is negated. In this BN, there exist two singleton attractors
(0,1, 1) and (1, 0, 1) which are shown in bold curves in (b).

some improvement was done in their work). In this paper, we do
not adopt such a non-realistic assumption. Cheng et al. also stud-
ied the same discrimination problem (Cheng, Qiu, Hou, & Ching,
2017). They developed an integer programming-based method for
discrimination of singleton attractors. Although they also assumed
that discrimination nodes had to be selected from consecutive
nodes, this restriction can be easily removed and then the method
might be practically useful. However, they did not perform any
theoretical analysis and their method cannot handle periodic at-
tractors. The main contributions of our work are discovery of a
novel and useful property on periodic attractors, development of
combinatorial algorithms for singleton and periodic attractors, and
theoretical analyses of the time complexities of these algorithms.
None of these was studied in the above-mentioned works.

2. Discrimination of singleton attractors

Before defining the problem, we briefly review Boolean net-
works (BNs). A BN N(V, F) consists of a set of n nodes V =
{vq,..., vy} and a corresponding set of Boolean functions F =
{fO v; e V). Let vi(t) € {0, 1} represent the value of a node
v; at time t, and denote by v(t) = (vy(t),..., vy(t)) the state
of the network at time t. The values of all nodes are updated
simultaneously according to the corresponding Boolean functions,
vi(t + 1) = FO(u(t)), where f© may depend only on a few nodes in
V. A directed graph can be associated with the network in which
there exists a directed edge (vj, v;) € E if and only if f) depends
on v;. Dynamics of a BN is well represented by a state transition
diagram in which nodes correspond to network states and there
exists a directed edge from u to v if and only if network state u at
time t transits to network state v at time t + 1. A sequence of states
v(0), v(1), ..., is called an attractor with period p if v(0) = v(p) and
v(i) # v(j) for alli,jwith 0 < i # j < p. An attractor with period
p = liscalled asingleton attractor. An attractor withp > 1is called
a periodic attractor and is represented as [v(0), v(1), ..., v(p — 1)].
Note that if [v(0), v(1), ..., v(p — 1)] is a periodic attractor, v(i) =
v(i+kp) holds for all i, k withi > 0and k > 0. Therefore, [v(i), v(i+
1),...,v(i+p—1)]and [v(j), v(j+1), ..., v(j+p—1)] represent the
same attractor for any i, j with i # j > 0. We say that two periodic
attractors [v(0), v(1),...,v(p — 1)] and [u(0), u(1), ..., u(p — 1)]
are identical if there exists an integer k with 0 < k < p such that
u((i+k)mod p) = v(i) holdsforalli =0, 1, ..., p—1.Fig. 1 shows
an example of a BN. In this BN, transition rules are given by

vi(t + 1) = vi(t) v v3(t),
va(t + 1) = vp(t) A wa(t),
v3(t + 1) = v1(t) @ va(t),

where x Ay, X VY, x @y, and x denote logical AND, OR, XOR, and
NOT, respectively. There exist two singleton attractors, (0, 1, 1)
and (1, 0, 1), and no periodic attractors.

Here we introduce the problem of determining the minimum
discriminators for singleton attractors. Let B be an m x n binary
matrix, where each row corresponds to a singleton attractor and
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