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a b s t r a c t

This paper deals with the algorithms for state feedback stabilization of Boolean control networks (BCNs).
By resorting to the semi-tensor product (STP) technique, the labelled digraph that can be used to com-
pletely characterize the dynamics of BCNs is derived, which leads to an equivalent graphical description
for the stabilization of BCNs. What is more interesting is the fact that the existence of a state feedback
control law stabilizing the BCN to some given equilibrium point can be characterized in terms of its
spanning in-tree. Consequently, two in-tree search algorithms, namely, the breadth-first search and the
depth-first search, are proposed to design the state feedback stabilizing law when global stabilization
is feasible. Besides, some basic properties about the tree-search algorithms are addressed. A biological
example is employed to illustrate the applicability and usefulness of the developed algorithms.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

A major objective of genetic regulatory network (GRN) mod-
elling concerns developing computational approaches for iden-
tification and discovery of potential targets for therapeutic
intervention in diseases such as cancer. Based on the large-
scalemicroarray data retrieved from biological experiments, many
mathematical models including the Boolean model, the Bayesian
network model and the differential equation model have been
proposed and utilized to reconstruct the GRNs aiming at deci-
phering the underlying gene regulatory mechanisms. Recently,
many experimental results have confirmed that the highly sim-
plified Boolean networks (BNs), originally introduced by Kauffman
(1969), are capable of predicting the dynamical sequence of pro-
tein activation patterns of GRNs. A practical example is the cell
cycle control network of yeast (Davidich & Bornholdt, 2008). The
modality of BNs has established a natural framework for providing
detailed understanding and insights of the dynamic behaviour
exhibited by large genetic networks.

In a Booleanmodel, only two states (i.e., ON andOFF) are used to
represent the expression level of each gene, and the state of a gene
is determined by a pre-assigned logic function concerning about
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the states of other related genes. Moreover, it has been recognized
that many biological systems have exogenous perturbations that
can be described as ‘control’ (Fauré & Thieffry, 2009), which should
be taken into account in the BNs in order to havemore appropriate
models. Therefore, the concept of Boolean control networks (BCNs)
has been formally put forward by adding binary inputs to the
BNs (Akutsu, Hayashida, Ching, & Ng, 2007). For instance, the
binary inputmay representwhether a certainmedicine is adminis-
tered or not when modelling the progression of a disease. And the
BCNs with inputs have been widely utilized to analyse and design
the therapeutic intervention strategies. The central focus here is to
design efficient and computational control sequence steering the
whole network from an undesirable location (implying a diseased
state) to a desirable one (corresponding to a healthy state). It is
worth pointing out that if the established BCN is controllable, then
the control sequence can be designed by means of a time invariant
state feedback law (Fornasini & Valcher, 2013). This characteristic
of the BCNs partly motivates the present research.

With the advent of semi-tensor product (STP) technique (Cheng,
Qi, & Li, 2011), which reduces a BN (BCN) to a positive linear
(bilinear switched) system whose input and state variables are
canonical vectors, a considerable amount of research attention
has been inspired. Consequently, several analysis and control
problems, which include but are not limited to, controllability
and observability (Cheng & Qi, 2009; Laschov & Margaliot, 2012;
Li & Wang, 2015; Li, Xie, & Wang, 2016; Zhang & Zhang, 2016,
2013), stability and stabilization (Cheng, Qi, Li, & Liu, 2011),
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optimal control (Fornasini & Valcher, 2014; Laschov & Margaliot,
2011), system decomposition (Zou & Zhu, 2014), and network
synchronization (Chen, Liang, Huang, & Cao, 2017; Li, 2014), have
been extensively investigated in recent years. These results make
significant contributions for gaining deep insights into the dynam-
ics of genetic networks and uncovering the complex relationships
between genes within the genome.

Many recent findings have provided experimental evidence for
the spontaneous emergence of ordered collective behaviour of
gene activity (Huang, 1999), which is an important property of
real GRNs. And, the BCNs that can be stabilized to the equilibrium
points also exhibit this behaviour. In the context of a cellular
signal transduction network, there is abundant justification in the
assertion that these equilibrium points correspond to different
functional states, such as death or unregulated growth (Huang
& Ingber, 2000; Saadatpour, Wang, Liao, Liu, Loughran, Albert, &
Albert, 2011; Zhang, Ma, & Liu, 2016). Moreover, the consideration
of state feedback stabilization issue for complex GRNsmodelled by
BCNs may pave the way towards the development of systematic
approaches for effective therapeutic intervention of diseases. As
such, determining the equilibrium points of a BCN and construct-
ing their stabilizing controllers are of fundamental and practical
importance. Recent studies on feedback stabilization of BCNs are
fruitful, and many important theoretical results have been re-
ported in the literature. Tomention just a few, some analysis crite-
ria for the existence of a stabilizing state feedback controller have
been obtained in Fornasini and Valcher (2013), it has also been
shown that if a BCN is stabilizable to the equilibrium point, then
the stabilization can be achieved bymeans of a time invariant state
feedback control law. In the remarkable paper (Li, Yang, & Chu,
2013), a general control design approach has been proposed when
stabilization is feasible via the state feedback scheme. Later, the
investigationhas been extended to theprobabilistic BCNs (Li, Yang,
& Chu, 2014). Inspired by Li et al. (2013), the stabilizing output
feedback problem has been addressed in Li and Wang (2013),
where an algebraic characterization of a logical matrix has been
presented which describes the stabilizing time invariant output
feedback control law. In the interesting paper (Bof, Fornasini, &
Valcher, 2015), some constructive algorithms have been given to
test the existence of a stabilizing output feedback law. Pinning
controllability and trajectory controllability analysis of BNs have
been carried out in Lu, Zhong, Huang, and Cao (2016) and Lu,
Zhong, Ho, Tang, and Cao (2016), respectively. Very recently, in Li
(2016), pinning control design has been further discussed for the
stabilization of BCNs.

Although the state feedback stabilization for BCNs has stirred
some initial research interests (Fornasini & Valcher, 2013; Li et al.,
2013), one of the main issues aroused here is, from the compu-
tational point of view, how to design a systematic procedure (or
algorithm), which can be resorted to stabilize the BCNs both ap-
plicably and efficiently, and this leaves enormous room for further
discussion/investigation by using the search algorithms developed
in graph theory. The so called tree-search plays a vital vole when
determining a shortest path tree, which is strongly related to
stabilization for BCNs. It is, therefore, the main purpose of this
paper to adapt the tree-search approach for designing efficient
algorithms that provide state feedback matrices guaranteeing the
global stabilization of BCNs. In this paper, we are concerned with
the problem of designing globally stabilizing state feedback con-
trollers for BCNs. Based on the algebraic representation of logical
dynamics in terms of the STP technique, the labelled digraphwhich
can be used to characterize the dynamics of BCNs is obtained.
Consequently, two search algorithms, namely, breadth-first search
and depth-first search, are proposed to construct the stabilizing

feedback control law when global stabilization via state feedback
is feasible.

The remaining part of the paper is organized as follows. Sec-
tion 2 formulates the problem addressed, and some notations and
preliminaries on the STP of matrices are also introduced. Section 3
presents themain results and algorithms of this paper. In Section 4,
a biological example is given, and a brief conclusion is drawn in
Section 5.

2. Problem formulation and preliminaries

Given k, n ∈ N with k ≤ n, denote the set {k, k + 1, . . . , n} by
[k, n].∆k is used to represent the set of all k-dimensional canonical
vectors {δik|i = 1, 2, . . . , k}, where δik is the ith canonical vector of
size k. A matrix B ∈ Rm×n is called a logical matrix if the columns
set of B, denoted by Col(B), satisfies Col(B) ⊂ ∆m. Let Rowi(B) be
the ith row of matrix B. The set of all m × n logical matrices is
represented by Lm×n. For B = [δ

i1
m δ

i2
m · · · δ

in
m] ∈ Lm×n, denote it

by B = δm[i1, i2, . . . , in] for simplicity.

Definition 1 (Cheng, Qi, & Li, 2011). The STP of two matrices B ∈

Rm×n and C ∈ Rp×q is defined as

B ⋉ C = (B ⊗ Iα/n)(C ⊗ Iα/p),

where α = lcm(n, p) is the least common multiple of n and p, and
‘⊗’ is the tensor (or Kronecker) product.

Obviously, there is a bijective correspondence between the
Boolean variable set D := {1, 0} and the canonical vector set
∆2. With some abuse of notation, the Boolean variable ϱ ∈ D
is always identified with the vector ϱ = δ

2−ϱ
2 ∈ ∆2, which is

usually expressed as ϱ ∼ ϱ if no confusion arises. It should be
noted that such correspondence can be extended naturally to the
bijection between Dn and∆2n via the STP. The following lemma is
fundamental for the matrix expression of logical functions.

Lemma 2 (Cheng, Qi, & Li, 2011). Let f (x1, x2, . . . , xn) : Dn
→ D

be a logical function. Then, there exists a unique matrix Mf ∈ L2×2n ,
called the structurematrix of f , such that f (x1, x2, . . . , xn) = Mf ⋉n

i=1
xi, xi ∈ ∆2.

A BCN with n nodes and m binary inputs is described by the
following equations:

xi(t + 1) = fi(X(t),U(t)), i = 1, 2, . . . , n (1a)

where X(t) = (x1(t), x2(t), . . . , xn(t)) ∈ Dn and U(t) = (u1(t),
u2(t), . . . , um(t)) ∈ Dm denote, respectively, the n-dimensional
state variable and the m-dimensional input variable at time t , and
fi : Dm+n

→ D (i = 1, 2, . . . , n) are the Boolean functions. First of
all, the global stabilizability of BCN (1a) is defined as follows.

Definition 3 (Li et al., 2013). For a given state Xe ∈ Dn, the BCN (1a)
is said to be globally stabilizable to Xe if for every X(0) ∈ Dn, there
exist U(t) for t ∈ N and τ ∈ N such that X(t) = Xe for every t ≥ τ .

The objective of this paper is to effectively design a computa-
tional state feedback controller

uj(t) = hj(X(t)), j = 1, 2, . . . ,m (1b)

where hj(·) is a logical function from Dn to D, such that the overall
closed-loop system (1) is globally stabilizable to the given state
Xe ∈ Dn.

Next, to facilitate the analysis, the above problem is reformu-
lated by resorting to the algebraic representation of the logical
functions. In terms of the STP technique, X(t) and U(t) can be
represented as canonical vectors in ∆N with N := 2n and ∆M
with M := 2m, respectively. From Lemma 2 and the property of
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