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a b s t r a c t

Stochastic Hybrid Systems (SHS) constitute an important class of mathematical models that integrate
discrete stochastic events with continuous dynamics. The time evolution of statistical moments is
generally not closed for SHS, in the sense that the time derivative of the lower-order moments depends
on higher-order moments. Here, we identify an important class of SHS where moment dynamics is
automatically closed, and hence moments can be computed exactly by solving a system of coupled
differential equations. This class is referred to as linear time-triggered SHS (TTSHS), where the state
evolves according to a linear dynamical system. Stochastic events occur at discrete times and the intervals
between them are independent random variables that follow a general class of probability distributions.
Moreover, whenever the event occurs, the state of the SHS changes randomly based on a probability
distribution. Our approach relies on embedding a Markov chain based on phase-type processes to model
timing of events, and showing that the resulting system has closed moment dynamics. Interestingly, we
identify a subclass of linear TTSHS, where the first and second-order moments depend only on the mean
time interval between events, and invariant of higher-order statistics of event timing. TTSHS are used
to model examples drawn from cell biology and nanosensors, providing novel insights into how noise is
regulated in these systems.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Stochastic hybrid systems (SHS) that combine continuous and
discrete interactions are increasingly being used to model noise
and uncertainty in physical, biological, and engineering systems.
Specific applications include communication networks (Bohacek,
Hespanha, Lee, & Obraczka, 2003; Hespanha, 2004, 2005a; Hu,
2006), network control systems (Antunes, Hespanha, & Silvestre,
2013b; Hespanha, 2014), air traffic control (Prandini & Hu, 2009;
Visintini, Glover, Lygeros, & Maciejowski, 2006), biological sys-
tems (Antunes & Singh, 2014; Bortolussi & Policriti, 2008; Daigle,
Soltani, Petzold, & Singh, 2015; Hu, Lygeros, & Sastry, 2004; Singh
& Hespanha, 2010; Soltani & Singh, 2016; Soltani, Vargas-Garcia,
Antunes, & Singh, 2016; Vargas-García, Soltani, & Singh, 2016),
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power grids (Dhople, Chen, DeVille, & Dominguez-Garcia, 2013;
Wang & Crow, 2011), modeling of energy grids and smart build-
ings (David, Du, Larsen, Mikučionis, & Skou, 2012; Strelec, Macek,
& Abate, 2012). Interested readers are referred to recent reviews
for an introduction to SHS (Hespanha, 2006; Hu, Lygeros, & Sastry,
2000; Teel, Subbaraman, & Sferlazza, 2014).

Traditional analysis of SHS relies heavily on variousMonte Carlo
simulation techniques, which come at a significant computational
cost (Gillespie, 1976; Gillespie & Petzold, 2003). Since one is often
interested in computing only the lower-ordermoments of the state
variables, much time and effort can be saved by directly computing
these statistical moments without having to run Monte Carlo sim-
ulations. Unfortunately, moment calculations in SHS can be non-
trivial due to theproblemof uncloseddynamics: the timeevolution
of lower-order moments of the state space depends on higher-
ordermoments (Singh &Hespanha, 2005). In such cases, moments
are solved by employing closure schemes, that close the system of
differential equations by approximating higher-order moments as
nonlinear functions of lower-ordermoments (Gillespie, 2009; Lee,
Kim, & Kim, 2009; Singh & Hespanha, 2006, 2011; Soltani, Vargas-
Garcia, & Singh, 2015).
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The problem of moment closure leads to an interesting ques-
tion: are there classes of SHS where moments can be computed
exactly without the need for closure techniques? Here, we identify
such a class of SHS known as time-triggered SHS (TTSHS) that are
a special case of piecewise-deterministic Markov processes (Costa
& Dufour, 2008; Davis, 1993). Themain ingredients of TTSHS are as
follows:

(1) A continuous state x(t) ∈ Rn that evolves according to a
stable linear dynamical system

ẋ(t) = â + Ax(t), (1)

for some constant vector â and matrix A. While previous
studies considered continuous dynamics of the form (1),
we extend our analysis to include TTSHS with stochastic
differential equations.

(2) Stochastic events occur at discrete times ts, s ∈ {1, 2, . . .},
and the intervals ts − ts−1 are independent and identical
random variables drawn from a given probability density
function. These events can be referred to as renewal tran-
sitions, as their timing is determined by an underlying re-
newal process.

(3) A reset map defines the change in xwhen the event occurs

x(ts) ↦→ x+(ts), (2)

where x+(ts) denotes the state of the system just after the
event. While prior work has considered a deterministic lin-
ear reset map

x(ts) ↦→ Jx(ts) (3)

(Antunes, Hespanha, & Silvestre, 2010, 2012, 2013a), we
allow for both state-dependent and state-independent noise
sources in x+(ts).

Our goal is to connect moments of the continuous state to the
statistics of the time interval T ≡ ts − ts−1. The key contribu-
tion of this work is to model arrival of events using phase-type
processes (Tijms, 1994), and show that the resulting systems has
closed moment dynamics. More specifically, the time derivative
of an appropriately selected vector of moments depends only on
itself, and not on higher-order moments. As a consequence, mo-
ments can be computed exactly by solving a system of differential
equations. For the sake of simplicity, we focus on computing the
first and second-order moments, but the ideas can be generalized
to obtain any higher-order moment. In addition, a subclass of
TTSHS is identified, where the first and second-order moments of
x depend only on the mean time interval between events. In this
case, making the arrival of events more random (for fixed mean
arrival times) will not result in higher noise in x. These methods
are illustrated on examples drawn from different disciplines.

2. TTSHS model formulation

Let the continuous state x(t) ∈ Rn evolves according to a set of
stochastic differential equations as

dx(t) = (â + Ax(t))dt + (G + Bx(t)1n)dwt , (4)

where G ∈ Rn×n and B ∈ Rn×n are constant matrices, 1n is a
1 × n unit matrix. Further wt is a n-dimensional Weiner process
satisfying

⟨dwt⟩ = 0, ⟨dwtdw⊤

t ⟩ = Indt, (5)

where In is a n × n Identity matrix, and the symbol ⟨ ⟩ denotes the
expected value.

Fig. 1. Schematic of a linear time-triggered stochastic hybrid system. The state
evolves according to a set of stochastic differential equation and events occur
randomly with hazard rate h(τ), where the timer τ measures the time since the
last event. Choosing the hazard rate as (6), ensures that the time between events
follows a continuous probability density function f . Whenever the event occurs the
timer is set to zero and x changes via (7).

The timing of events in TTSHS can be modeled through a timer
τ, that measures the time elapsed since the last event. This timer is
reset to zero whenever an event occurs and increases over time as
dτ = dt in between events. Let the time intervals between events
follow a continuous positively-valued probability density function
f . Then, the transition intensity for the event is given by the hazard
function

h(τ ) ≡
f (τ )

1 −
∫ τ

y=0 f (y)dy
(6)

(Evans, Hastings, & Peacock, 2000; Ross, 2010). In particular, the
probability that an event occurs in the next infinitesimal time
interval (t, t + dt] is h(τ)dt . This formulation of the event arrival
process via a timer allows representation of TTSHS as a state-
driven SHS (Fig. 1). Hence, existing tools such as, Kolmogorov
equations and Dynkin’s formulas for obtaining time evolution of
moments can be employed for studying stochastic dynamics of
TTSHS (Hespanha, 2014). Having defined the timing of events, we
next focus on how the events alter the state of the system.

Whenever an event occurs, x is reset to x+, where x+ is a
random variable with following statistics

⟨x+(ts)⟩ = Jx(ts) + R, (7a)⟨
x+(ts)x⊤

+
(ts)

⟩
− ⟨x+(ts)⟩⟨x+(ts)⟩⊤

= Qx(ts)x⊤(ts)Q⊤
+ Cx(ts)D⊤

+ Dx⊤(ts)C⊤
+ E, (7b)

here J ∈ Rn×n, R ∈ Rn×1, Q ∈ Rn×n, C ∈ Rn×n, D ∈ Rn×1, and E ∈

Rn×n are constant matrices. Further E is symmetric. Note that the
mean of x+ is a linear affine function of x, which is a generalization
over the linear map (3) previously used. The covariation matrix of
x+ is defined by (7b) and covers a wide range of possibilities. For
example, Q = C = D = E = 0 imply x+ = Jx+ Rwith probability
one. Moreover, non-zero Q , C , D, and E can be used to incorporate
constant or state-dependent noise in x+. In the following sections,
we show how statistical moments of x(t) can be computed exactly
for TTSHS illustrated in Fig. 1.We first consider a subclass of TTSHS,
where events only impart noise to the system, in the sense that the
average value of x just after the event is the same as its value just
before the event.

3. Moment dynamics of TTSHS with noise-imparting events

Consider a subclass of the TTSHS with J = I , R = Q = 0
reducing (7) to

⟨x+(ts)⟩ = x(ts), (8a)⟨
x+(ts)x⊤

+
(ts)

⟩
− ⟨x+(ts)⟩⟨x+(ts)⟩⊤

= Cx(ts)D⊤
+ Dx⊤(ts)C⊤

+ E. (8b)
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