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a b s t r a c t

In this paper we investigate the consensus problem under arbitrary switching for homogeneous multi-
agent systems with switching communication topology, by assuming that each agent is described by
a single-input stabilizable state–space model and that the communication graph is connected at every
time instant. Under these assumptions, we construct a common quadratic positive definite Lyapunov
function for the switched system describing the evolution of the disagreement vector, thus showing that
the agents always reach consensus. In addition, the proof leads to the explicit construction of a constant
state-feedback matrix that allows the multi-agent system to achieve consensus.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Research efforts on multi-agent systems, in general, and con-
sensus problems, in particular, have been quite impressive in the
last decade. Originated by some remarkable contributions that still
represent the reference points of any paper on the subject (Fax
& Murray, 2004; Olfati-Saber, Fax, & Murray, 2007; Ren & Atkins,
2007; Ren & Beard, 2005; Tsitsiklis, 1984), the research flour-
ished by addressing increasinglymore complex set-ups, and hence
taking into account higher order (possibly nonlinear) models for
the agents, time-varying communication topologies, antagonistic
interactions, communication delays, output feedback, packet-loss,
etc. (see, e.g., Li, Chen, Su, & C., 2015; Li, Duan, & Lewis, 2014; Olfati-
Saber & Murray, 2004; Ren & Beard, 2005; Scardovi & Sepulchre,
2009; Su, & Lin, 2016; Xia, Cao, & Johansson, 2016).
Even if a significant portion of the research in this area focuses on
first and second order systems (Meng, Shi, Johansson, & Hong; Xia
et al., 2016), a good number of contributions have investigated the
case when the agents’ dynamics is described by a generic state–
space model. While in the early contributions the communication
topology was supposed to be fixed (Wieland, Kim, & Allgower,
2011;Wieland, Kim, Scheu, & Allgower, 2008), more recent papers
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have explored the case of a time-varying communication topology,
possibly switching among a finite set of configurations (Su &
Huang, 2012; Wang, Cheng, & Hu, 2008; Wen, Duan, Chen, & Yu,
2014; Wen & Ugrinovskii, 2014).

All the literature addressing the case of higher order agentswith
switching communication topologies has been able to relax the
connectedness constraint on every communication graph, at the
price of imposing additional constraints not only on the switching
signal but also on the agents’ model. Specifically, in Su and Huang
(2012) and Wu, Qin, Yu, and Allgower (2013) the consensus prob-
lem is solved and an explicit solution is provided, by assuming that
the agent’s state model is stabilizable, the state matrix A is simply
stable, the switching signal describing how the communication
topology varies has a minimum dwell-time and ensures that the
time-varying communication graph G(t) is uniformly connected
over [0,+∞). In Qin and Yu (2014) the state matrix A satisfies
some algebraic constraint, the input to state matrix B is of full row
rank (a sufficient condition for controllability), switching signals
have a dwell time, and the communication topologies are repeat-
edly jointly rooted. Under these conditions, the consensus problem
is solvable and a state feedback matrix is explicitly constructed.
In Wang et al. (2008), consensus has been investigated, under the
assumption that agents are controllable and switching signals have
a dwell-time, both in case the communication network over which
agents communicated is connected at every time and in case it is
frequently connected with a certain period T .

In most of these contributions, dwell time and controllability
have been fundamental requirements in order to design a state
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feedback controller that ensures a sufficiently rapid convergence.
For instance, the proof of Theorem 1 in Wang et al. (2008) heavily
relies on the possibility to freely allocate the eigenvalues of the
matrices A−λiBK , involved in the disagreement dynamics, and on
the existence of a dwell time. It is interesting to understand under
what conditions multi-agent consensus can be guaranteed corre-
sponding to every switching signal and not only corresponding to
switching signals with dwell-time.

It is a standard result for switched systems that if all the sub-
systems are asymptotically stable, then a dwell-time can always be
found such that the switched system is asymptotically and hence
exponentially stable. However, asymptotic stability of the subsys-
tems alone does not ensure asymptotic stability of the switched
system for every switching signal.

In this paper we investigate the consensus problem under ar-
bitrary switching. This strong requirement on the system perfor-
mances necessarily imposes that the communication network is
connected at every time. On the other hand, it turns out that the
stabilizability of the agents’ dynamics is necessary and sufficient
for the problem solvability, just like it happens when we con-
sider a fixed connected communication network (Wieland et al.,
2011). Evenmore, we provide an explicit solution to the consensus
problem. The paper set-up is inspired by the one adopted in Su
and Huang (2012), but we extend the agents’ model decomposi-
tion adopted in the previously mentioned reference to the case
when the state matrix has also eigenvalues with positive real part.
Subsequently, we construct a quadratic positive definite function
that ensures the asymptotic stability of the switched system de-
scribing the dynamics of the disagreement vector, and thus prove
consensus. It is worth remarking that, in general, it is hard or even
impossible to construct a commonquadratic Lyapunov function for
the consensus error systemof amulti-agent systemwith switching
topology. When so (see e.g. Wen et al., 2014;Wen, Hu, Yu, & Chen,
2014;Wen&Ugrinovskii, 2014),multiple Lyapunov functions have
been proposed to stabilize or verify the stability.

It is worth comparing our results with those derived in Li, Ren,
Liu, and Xie (2013), where a consensus protocol for homogeneous
multi-agent systems with arbitrarily switching topologies is pro-
posed, by assuming that the communication graph is connected
(and undirected) at every time instant. The set-up adopted in Li
et al. (2013) is rather different from the one considered in this pa-
per, since the switching takes place among all possible undirected,
connected and unweighted communication graphs, but theweights
attributed to the graph edges are regarded as control variables
that continuously update. So, the switching is not among a finite
number of undirected, connected and weighted communication
graphs, but weights can be adaptively modified. The advantage of
this adaptive consensus protocol is that it can be implemented in
a completely distributed way by the agents. The con is that the
controller significantly increases in size. Indeed, if n is the size of
the agents’ state and N is the number of the agents, the overall
controlled system in Li et al. (2013) has size 2nN + N(N − 1)/2,
since the adaptive controller updates both a ‘‘protocol state’’ of size
n for each agent, and the distinct N(N − 1)/2 weights of the edges
of the undirected graph at every time instant. In this paper, wewill
use a static controller and the overall controlled system will have
size nN .
The paper is organized as follows: in Section 2 we present some
backgroundmaterial onmatrices, graphs, and Laplacians. Section 3
presents the problem set-up. In Section 4 some preliminary anal-
ysis is carried on that allows to simplify the set-up and to reduce
the consensus problem to a stabilization problem for a lower-order
switched system with autonomous subsystems. A constructive
proof of themain result, stating that if the communication network
is connected at every time and the agents’ model is stabilizable,
then consensus can always be achieved, is given in Section 5,
together with a simple algorithm to explicitly construct a state
feedback matrix ensuring consensus.

2. Background material

If p is a positive integer, we denote by [1, p] the finite set
{1, 2, . . . , p}. ei is the ith canonical vector in RN , where N is always
clear from the context. 1N and 0N are the N-dimensional vectors
with all entries equal to 1 and to 0, respectively. Given A ∈ Rn×n,
we denote by σ (A) the spectrumof A and byλmax(A) ∈ R its spectral
abscissa, defined as λmax(A) := max{ℜ(λ), λ ∈ σ (A)}. A is Hurwitz
if λmax(A) < 0. The Kronecker (or tensor) product of two matrices
A ∈ Rm×n and B ∈ Rp×q is

C = [A ⊗ B] :=

⎡⎢⎢⎣
a11B a12B . . . a1nB
a21B a22B . . . a2nB
...

...
. . .

...

am1B am2B . . . amnB

⎤⎥⎥⎦ ∈ Rpm×qn.

An n × n matrix A, n > 1, is reducible if there exists a permutation
matrixΠ such that

Π⊤AΠ =

[
A11 A12
0 A22

]
,

where A11 and A22 are square (nonvacuous) matrices, otherwise it
is irreducible.
R+ is the semiring of nonnegative real numbers. A matrix A with
entries in R+ is a nonnegative matrix (A ≥ 0); if A ≥ 0 and at least
one entry is positive, A is a positive matrix (A > 0).
AMetzler matrix is a real square matrix, whose off-diagonal entries
are nonnegative. For a Metzler matrix, the spectral abscissa is
always an eigenvalue (namely the eigenvalue with maximal real
part is always real). Given two Metzler matrices A and Ā ∈ Rn×n,
the following monotonicity property holds (Son & Hinrichsen,
1996): if A ≤ Ā, then λmax(A) ≤ λmax(Ā); if in addition Ā is
irreducible, then A < Ā implies λmax(A) < λmax(Ā).
An undirected, weighted graph is a triple (Mohar, 1991) G =

(V, E,A), where V = {1, . . . ,N} is the set of vertices, E ⊆ V × V
is the set of arcs, and A = A⊤

∈ RN×N
+ is the (positive and

symmetric) adjacency matrix of the weighted graph G. In this paper
we assume that G has no self-loops, namely each diagonal entry
[A]ii, i ∈ [1,N], is zero. A sequence j1 ↔ j2 ↔ j3 ↔ · · · ↔

jk ↔ jk+1 is a path of length k connecting j1 and jk+1 provided that
(j1, j2), (j2, j3) . . . , (jk, jk+1) ∈ E . A graph is said to be connected if
for every pair of distinct vertices i, j ∈ V there is a path connecting
i and j. This is equivalent to the fact thatA is an irreducible matrix.
We define the Laplacian matrix L ∈ RN×N of the graph G as L :=

C − A, where C ∈ RN×N
+ is a diagonal matrix whose ith diagonal

entry is the weighted degree of vertex i, i.e. [C]ii :=
∑N

l=1[A]il.

Accordingly, the Laplacian matrix L = L⊤ takes the following
form:

L =

⎡⎢⎢⎣
ℓ11 ℓ12 . . . ℓ1N
ℓ12 ℓ22 . . . ℓ2N
...

...
. . .

...

ℓ1N ℓ2N . . . ℓNN

⎤⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N∑
j=1

[A]1j −[A]12 . . . −[A]1N

−[A]12

N∑
j=1

[A]2j . . . −[A]2N

...
...

. . .
...

−[A]1N −[A]2N . . .

N∑
j=1

[A]Nj

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ RN×N .

As all rows of L sum up to 0, 1N is always a right eigenvector
of L corresponding to the eigenvalue 0. The following lemma
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