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a b s t r a c t

The anisotropic norm of discrete-time linear stochastic systemswith state dependent noise is considered.
Using first principles analysis applying completing the square arguments, it is proved that the anisotropic
norm of such systems is upper bounded by a given positive real scalar, if a specific Riccati equation
has a stabilizing positive semidefinite solution satisfying two additional conditions. It is shown that
these conditions are sufficient and necessary for the boundedness of the anisotropic norm. Numerical
algorithms to determine the stabilizing solution of this Riccati equation allowing thus to compute the
anisotropic norm of stochastic systems with multiplicative noise are also presented. The theoretical
results are illustrated by numerical examples.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The problems of robust optimal control and filtering received
much attention over the last seven decades. Early solutions for
these problems were presented by Kwakernaak and Sivan (1987)
and robustness issues due to modelling errors were considered
in e.g. Stein and Athans (1992). Structured modelling errors af-
fecting the state–space model can be assumed to be either de-
terministic (e.g. Xie, Fu, and deSouza (1992) and Young, Newlin,
and Doyle (1991)) or stochastic (Costa & Kubrusly, 1996). In the
latter case, the system state–space matrices are subject to additive
random perturbations of white noise type, leading to systems
involving state-multiplicative white noise. This type of stochastic
systems have been studied over the last few decades (see, for
instance, Wonham (1970), Dragan, Morozan, and Stoica (2010)
and Gershon, Shaked, and Yaesh (2005)). Real-life systems differ
from their nominal models also due to exogenous signals serving
either as a process noise (i.e. the input to the systems) or as a
measurement noise. When the exogenous signals are of white
noise type, then H2− normminimization is applied, leading to the
Kalman filter (Kalman, 1960) and Linear Quadratic Gaussian (LQG)
control. An alternative modelling of the exogenous inputs is based
on deterministic bounded energy signals. Such formulations lead

✩ The material in this paper was not presented at any conference. This paper
was recommended for publication in revised form by Associate Editor Valery
Ugrinovskii under the direction of Editor Ian R. Petersen.

E-mail addresses: adrian.stoica@upb.ro (A.-M. Stoica), iyaesh@imi-israel.com
(I. Yaesh).

to the H∞-norm based framework (Zames, 1981) and are applied
in both filtering (Grimble, 0000; Simon, 2006) and control (Yaesh
& Shaked, 1991). Many practical applications, however, require
a compromise between the H2 and the H∞-norm minimization
since the latter may not be suitable when the considered signals
are strongly coloured (e.g. periodic signals). On the other hand,
H∞-optimization may poorly perform when these signals are
weakly coloured (e.g. white noise). For such cases mixed H2/H∞

norm minimization problems have been formulated and analysed
(see, e.g. Bernstein and Haddad (1989), Dragan et al. (2010),
Rotstein & Sznaier (1998) and Zhang, Huang, and Xie (2008)). A
promising alternative to accomplish such compromise is to use
the so-called a-anisotropic norm (Vladimirov, Kurdyukov, & Se-
myonov, 1995, 1996) since it offers and intermediate topology
between the H2 and H∞ norms. More precisely, if the coloured
signal is generated by an m-dimensional exogenous input, the
a-anisotropic norm |||F |||a of a stable system F has the property (see,
for instance Vladimirov et al. (1996)):

1
√
m

∥F∥2 = |||F |||0≤ |||F |||a≤ ∥F∥∞ = lim
a→∞

|||F |||a

where |||F |||a is defined by

|||F |||a= sup
G∈Ga

∥FG∥2

∥G∥2
, (1)

Ga denotes the set of all stochastic systems of form (4) with the
mean anisotropy Ā(G) ≤ a. The mean anisotropy of a stationary
Gaussian sequence was introduced in Vladimirov et al. (1995)
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and represents an entropy theoretic measure of the deviation of
finite-dimensional probability distributions of such a sequence
from the corresponding isotropic distributions of a Gaussian white
noise sequence with zero mean and a scalar covariance matrix.
In Vladimirov et al. (1996), it is proved based on the Szegö–
Kolmogorov theorem (Rozanov, 1990), that the mean anisotropy
of a signal w(k), −∞ < k < ∞, generated by an m-dimensional
Gaussian white noise with zero mean and identity covariance
applied to a stable linear system Gwith m outputs, has the form

Ā(G) = −
1
2
ln det

(
mE

[
w̃(0)w̃(0)T

]
E
[
|w(0)|2

] )
, (2)

where E[w̃(0)w̃(0)T ] is the covariance of the prediction error
w̃(0) := w(0) − E[w(0)|w(k), k < 0]. In the case when the output
w of the filterG is a zeromeanGaussianwhite noise (i.e. its optimal
estimate is just zero),w(0) cannot be estimated from its past values
and w̃(0) = w(0) which leads to Ā(G) = 0. In Kurdyukov,
Maksimov, and Tchaikovsky (2010), conditions for the anisotropic
normboundedness are given in terms of a non convex optimization
problem while in Tchaikovsky and Kurdyukov (2011) a convex
form of the Bounded Real Lemma (BRL) type result with respect to
the anisotropic norm was obtained, in both papers linear discrete-
time systems being considered. One of the leading motivations
to use the anisotropic norm is the fact |||F |||a≤ ∥F∥∞ making it a
relaxed version of the H∞-norm for many practical cases in which
the driving noise signals can be characterized not just by their finite
energy, but as outputs of a colouring linear systems in a certain
class, where the colouring filters are of a finite anisotropy. In a case
study presented in Tchaikovsky (2012) it is shown that for a TU-
154 type aircraft landing system, the H∞ controller is more effi-
cient than the corresponding H2 controller for a wind shear profile
(which is a coloured rather than awhite noise process) but, as could
be expected, is more conservative, in the sense of higher gains and
subsequently larger control actions; moreover, the anisotropic-
norm based controller (based on an appropriate anisotropic norm
bound) is less conservative than the H∞ controller and requires
significantly smaller control actions.

The aim of the present paper is to derive convex characteriza-
tion of BRL type conditions for the bound on the anisotropic norm
of stochastic systems with multiplicative noise. All developments
of the present paper utilize time domain representations of the
signals and direct calculations. The obtained results provide a
generalization, for the case of systems with randomly perturbed
state–space matrices considered in Stoica and Yaesh (2012). Note
that when G is a linear system without multiplicative noise, then
its output w has a Gaussian distribution. When, however, G is
corrupted with multiplicative noise as considered in this paper,
the equivalent definition given above for Ā(G) no longer holds, and
the higher moments than just the spectral density are involved. In
spite of this fact, in the present paper, we adopt an anisotropic-
norm setup, where the simple definition of (2) in terms of second
order moments only of w(0) and its estimate. We will see in the
sequel, that this definition leads to the result of our Theorem 1,
which is consistent both with the anisotropic norm-related re-
sults of Kurdyukov et al. (2010) and Tchaikovsky and Kurdyukov
(2011) for linear systemswithoutmultiplicative noise andwith the
H∞-norm related results of Dragan et al. (2010) for systems with
multiplicative noise.

Notation. Throughout the paper the superscript ‘T ’ stands for
matrix transposition, R denotes the set of real numbers whereas
Z+ stands for the non-negative integers. Moreover,Rn denotes the
n dimensional Euclidean space, Rn×m is the set of all n × m real
matrices, and the notation P > 0 (P ≥ 0), for P ∈ Rn×n means
that P is symmetric and positive definite (positive semi-definite).
The trace of a matrix Z is denoted by Tr(Z), and |v| denotes the Eu-
clidean norm of the vector v. Finally note that the terms Lyapunov

and Riccati equations in this paper, refer to generalized versions
of the standard equations appearing in the H2 and H∞ control
literature.

2. Preliminaries and problem statement

Consider the stochastic system with multiplicative noise, F ,
described by

x(t + 1) = A(t)x(t) + B(t)w(t)
y(t) = Cx(t) + Dw(t), t = 0, 1, . . . (3)

where the randomly perturbed state–space matrices are given by

A(t) := A0 +

r∑
i=1

ξi(t)Ai

B(t) := B0 +

r∑
i=1

ξi(t)Bi

and where ξ (t) = (ξ1(t), . . . , ξr (t))T : Ω → Rr are independent
random vectors on a probability space (Ω,F,P) numbered by
nonnegative integers t = 0, 1, . . .. It is assumed that {ξ (t)}t≥0
satisfies the conditions E [ξ (t)] = 0 and E

[
ξ (t)ξ T (t)

]
= Ir , t =

0, 1, . . . , E[·] denoting the expectation of the random variable (·).
The matrices of the state space model (3) have the dimensions as
follows: Ai ∈ Rn×n, Bi ∈ Rn×m, i = 0, 1...., r, C ∈ Rp×n, D ∈

Rp×m.

Definition 1. A stochastic systemwithmultiplicative noise of form
(3) with Bi = 0, i = 0, 1, . . . , r is called exponentially stable in
mean square (ESMS) if there exist β ≥ 1 and ρ ∈ (0, 1) such that
E
[
|Φ(t, s)x(s)|2

]
≤ βρt−sE

[
|x(s)|2

]
for all t ≥ s ≥ 0, x(s) ∈ Rn,

where Φ(t, s) denotes the fundamental matrix solution of (3).

Definition 2. The H2-type norm of the ESMS system (3) is defined
as

∥F∥2 =

[
lim
ℓ→∞

1
ℓ

ℓ∑
t=0

E
[
yT (t)y(t)

]] 1
2

,

where {y(t)}t∈Z+
is the output of the system (3) with zero ini-

tial conditions generated by the sequence {w(t)}t∈Z+
of indepen-

dent random vectors with the property that E [w(t)] = 0 and
E
[
w(t)wT (t)

]
= Im, {w(t)}t∈Z+

being assumed independent of the
stochastic process {ξ (t)}t∈Z+

.

The next result provides a method to compute the H2 norm of
the stochastic system (3) (see e.g. Dragan et al. (2010)).

Lemma 1. The H2 type norm of the ESMS system (3) is given by
∥F∥2 =

(
Tr
(∑r

i=0B
T
i XBi + DTD

)) 1
2 where X ≥ 0 is the solution of

the generalized Lyapunov equation X =
∑r

i=0A
T
i XAi + CTC.

The dual result is given by the following lemma (Dragan et al.,
2010).

Lemma 2. The H2 type norm of the ESMS system (3) is also given
by ∥F∥2 =

(
Tr
(
CYCT

+ DDT
)) 1

2 where Y ≥ 0 is the solution of the
generalized Lyapunov equation Y =

∑r
i=0AiYAT

i +
∑r

i=0BiBT
i .

Let L2 (Z+ × Ω,Rm) denote the space of all sequences w =

{w(t)}t∈Z+
of m-dimensional vectors with ∥w∥

2
:=

∑
∞

t=0E[
|w(t)|2

]
< ∞ and L̃2 (Z+ × Ω, Rm) denote the space of all

w ∈ L2 (Z+ × Ω,Rm) such that w(t) is measurable with respect
to Ft for every t ∈ Z+, Ft ⊂ F denoting a family of σ -algebras
generated by ξ (s), s < t . In Morozan (1998), it is proved that if
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