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a b s t r a c t

This paper considers thedistributed state estimationproblem for nonlinear stochastic systemsover sensor
networks. It is assumed that the nonlinear functions are bounded in the pseudo Lipschitz condition. Based
on the stochastic Lyapunov stability theory, a distributed consensus filter (DCF) is proposed for both
continuous and discrete nonlinear stochastic systems for each node in a sensor network. It will be shown
that the estimation errors of the proposed filters are exponentially ultimately bounded in the sense of
mean square in terms of linear matrix inequality (LMI). Furthermore, a criterion is presented to optimize
the filter gains based onminimizing the upper bound ofmean-square error. Numerical examples are used
to verify the theoretical results.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In recent decades, the problem of distributed state estimation
(DSE) has received great attention for its successful applications in
different areas including environmental monitoring, surveillance,
cooperative control of multi-agent systems, target tracking and so
on (Olfati-Saber, Fax, &Murray, 2007; Xie, Choi, Kar, & Poor, 2012).
The essential principles of DSE algorithms in sensor networks
are state estimation at every node and reaching consensus based
on the estimated states of each node and its neighboring nodes.
Here the word ‘‘consensus’’ means that each sensor node uses
distributed filters that can agree on an estimated value with their
neighbors. These types of algorithms are called distributed con-
sensus algorithms. In recent decades, many distributed consensus
algorithms were introduced and applied (Farina, Ferrari-Trecate,
& Scattolini, 2010; Olfati-Saber, 2005, 2007, 2009; Zhu, Chen, Li,
Yang, & Guan, 2013).

Distributed consensus algorithms can be classified into four
groups: consensus on state estimation, consensus on innovations,
consensus on information and H∞ consensus. The first group has
consensus on state estimation, in which estimates are averaged
to reach a consensus (Açıkmeşe, Mandić, & Speyer, 2014; Farina
et al., 2010; Olfati-Saber, 2007, 2009; Zhu et al., 2013). Some of
the first consensus algorithms on state estimation were given
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in Olfati-Saber (2007, 2009). Actually, by adding a consensus
term to the Kalman filter, consensus filters in discrete and con-
tinuous forms, which are called Kalman-consensus filters, were
introduced in Olfati-Saber (2007). The error covariance of the
Kalman-consensus filter was not optimal in a discrete manner,
which could cause unacceptable estimation errors. Thus, an op-
timal consensus filter was proposed in Olfati-Saber (2009) and
its stability was investigated. In the second group, a consensus
is performed on local innovations (Li & Jia, 2011, 2012; Olfati-
Saber, 2005, 2007). In Olfati-Saber (2005), the first consensus
filter based on consensus on innovations has been proposed. A
modified version of this consensus filter which can be applied in
a sensor network with different observation matrices was intro-
duced in Olfati-Saber (2007). In papers Li and Jia (2011, 2012),
consensus on innovations was used to design consensus filters for
jump Markov systems and discrete-time nonlinear systems with
non-Gaussian noise. In the third group, consensus occurs on the
inverse of the state estimation covariance matrix or information
matrix that was firstly applied in a distributed state estimation
problem (Battistelli, Chisci, Morrocchi, & Papi, 2011). Later, a
novel consensus filter has been proposed to study the distributed
target tracking problem over a sensor network (Battistelli, Chisci,
Fantacci, Farina, & Graziano, 2013). This filter was extended to be
used in a tracking problem for a maneuvering target (Battistelli,
Chisci, Fantacci, Farina, & Graziano, 2015a). More recently, a con-
sensus filter based on the unscented Kalman filter and consensus
on information was presented for systems with sensor saturation
and state saturation (Li, Wei, & Han, 2014). Finally, the fourth
group of consensus filters is H∞ consensus which was originally
introduced in Shen, Wang, and Hung (2010). The main reason
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to apply H∞ consensus is this fact that the practical systems are
often along with parameter uncertainties and disturbances. Con-
sequently, we cannot use ordinary consensus filters. Therefore, the
H∞ consensus has been recently developed (Han, Wei, Song, & Li,
2015; Ugrinovskii, 2014).

Target tracking is one of the fundamental problems in sensor
networks in both theory and application (Morbidi & Mariottini,
2013; Olfati-Saber & Jalalkamali, 2012; Ou, Du, & Li, 2012; Ou,
Gu, Wang, & Dong, 2015; Zhu et al., 2013). In Olfati-Saber and
Jalalkamali (2012), the authors have solved the problemof tracking
control for mobile sensors with linear dynamics to estimate the
states of a linear target and track that linear target based on a
flocking manner. In this work, a distributed Kalman filter is pro-
posed to estimate the states of the target. This filter is developed
for tracking a target with linear dynamics in heterogeneous sensor
networks (Zhu et al., 2013). In Morbidi and Mariottini (2013), a
teamof unmanned aerial vehicles are considered asmobile sensors
and a distributed estimation and control algorithm is suggested for
them to track a target with linear dynamics. In Ou et al. (2012), a
distributed controller has been presented to solve the cooperative
control problem of mobile sensors with nonlinear dynamics. The
proposed controller makes mobile sensors converge to a desired
trajectory. In Ou et al. (2015), the problem of finite-time tracking
control of multiple nonholonomic mobile robots subject to ex-
ternal disturbances has been solved. An observer is presented to
estimate the disturbance and a finite time controller is designed
for each robot to track the target with nonholonomic dynamics. In
this work, the target’s position is assumed to be available.

The targets in the aforementioned target tracking problems
have continuous dynamics and their states are considered to be
available or have linear dynamics. But, these assumptions actually
do not hold in practical environments because many practical
targets such as unmanned aerial, ground, or underwater vehicles
and satellites have continuous nonlinear dynamics and their states
must be estimated by sensor networks. Thus, it is necessary to
paymuch attention to the design of DSE algorithms for continuous
nonlinear systems. Some algorithms have also been proposed for
state estimation of targets with nonlinear dynamics (Battistelli,
Chisci, Mugnai, Farina, & Graziano, 2015b; Hu & Hu, 2010; Li,
Wei, Han, & Liu, 2016). In Hu and Hu (2010), a nonlinear con-
vergent filter has been presented to estimate the target’s states
in a sensor network. The target’s dynamics has been described
by a continuous-time linear system whose input is generated
by another linear system. In Battistelli et al. (2015b), a hybrid
consensus filter is presented with a combination of consensus on
information, consensus on measurements and extended Kalman
filter algorithm. The stability analysis of the proposed filter is
limited to linear systems. In Li et al. (2016), a nonlinear consensus
filter has been suggested by employing a consensus approach and
unscented Kalman filter. This filter had bounded estimation error
in the sense of mean-square and could estimate the states of a
target with discrete-time nonlinear dynamics. It should be noted
that the proposed algorithms in Battistelli et al. (2015b) and Li
et al. (2016) have obtained for state estimation of the targets with
discrete-time nonlinear dynamics and cannot be implemented for
state estimation of continuous-time nonlinear systems. Further-
more, although Hu andHu (2010) has proposed a continuous-time
consensus filter, the target has a special structure in whichmost of
the targets are not classified. These limitations motivate us for this
study.

In this paper, by using the proposed estimator in Xie and
Khargonekar (2012) and consensus techniques on state estimation,
a DCF for estimating the states of continuous nonlinear systems is
proposed. In fact, Xie and Khargonekar (2012) suggested an esti-
mator for estimating states and parameters of a class of continuous
nonlinear stochastic system based on Lyapunov stability theory

with a suboptimal gain. Additionally, the discrete-time version of
proposed DCF is presented for implementation application. There-
fore, the main contributions of this paper are as follows:

• A novel DCF is presented to estimate the states of a contin-
uous nonlinear stochastic system. The discrete-time version
of the proposed DCF is also introduced.

• The exponentially ultimately boundedness of the estimation
errors of proposed DCFs is proved and suboptimal gains are
obtained for both continuous and discrete DCF by minimiz-
ing the upper bound of the estimation error.

The remainder of this paper is organized as follows. Section 2
introduces a DCF for continuous nonlinear system and analyzes its
convergence and optimality. In Section 3, a discrete-time DCF is
presented based on the discrete version of Lyapunov theory and
a suboptimal gain is obtained. The proposed DCFs performance is
studied with numerical examples both for continuous and discrete
systems in Section 4. Finally, the conclusions are drawn in Sec-
tion 5.
Notation and graph theory. λmax(.) and λmin(.) denote the biggest
and the smallest eigenvalues, respectively. ⊗ represents the Kro-
necker product. E[.] denotes the expectation operator. C2,1 denotes
the family of all nonnegative functions V (x(t), t) that are contin-
uously twice differentiable in x and once differentiable in t . IM
denotes anM × M identity matrix.

The sensor nodes of the network are communicated over an
undirected graph G = (v, ε, A), where v = {1, 2, . . . ,N} is the
sensor node set, ε ∈ v× v = {(i, j) : i, j ∈ v} is the communication
link set and A = [aij] ∈ RN×N is the adjacent matrix. If nodes
i and j are connected, then the node i is the neighbor of node j
and aij = aji > 0. The Laplacian matrix for graph G is defined
as L = D − A, in which D is a diagonal matrix with the diagonal
elements di =

∑
j∈Ni

aij. The eigenvalues of a Laplacian matrix can
be ordered as λ1(L) ≤ λ2(L) ≤ . . . ≤ λN (L) in which the second
smallest eigenvalue, λ2(L) is called the algebraic connectivity of the
network. Ni = {j ∈ v : (i, j) ∈ ε, j ̸= i} denotes the set of neighbors
of node i. In this paper, the assumption is that no node is connected
with itself, i.e. aii = 0 ; 1 ≤ i ≤ N . If there is a link between
nodes i and j, the corresponding element in the adjacent matrix
will be 1. G is called a connected graph if and only if there is at least
one path between every two arbitrary nodes. It is a critical point
that an undirected graph is connected if and only if its algebraic
connectivity is positive: λ2(L) > 0.

2. Continuous-time distributed consensus filter (CDCF)

Consider the continuous-time nonlinear system with the fol-
lowing dynamic equations:

ẋ(t) = f (x(t)) + Bw(t), x(t) ∈ RM (1)
yi(t) = hi(x(t), t) + Divi(t), i = 1, . . . ,N (2)

where w(t) and vi(t) are white noises with covariances Q (t) and
Ri(t), respectively. x(t) is the state vector, yi(t) is the ith sensor
measurement vector. f (.) and hi(.) are nonlinear functions. It is
noteworthy that B can be a function of x(t). The problem is to
estimate the states of the nonlinear system (1) by providing a novel
distributed estimation algorithm in a sensor network. As men-
tioned in the introduction section, the proposed CDCF is concluded
from Xie and Khargonekar (2012). In fact, Xie and Khargonekar
(2012) has employed the observers in Tarn and Rasis (1976), Yaz
and Azemi (1993), Cho and Rajamani (1997) and introduced an
estimator that could estimate the states and unknown parameters
of a class of nonlinear stochastic systems. This reference has used
the structure in Tarn and Rasis (1976) and sufficient conditions
for estimation error boundedness and the optimal filter gain have
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