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a b s t r a c t

For control-affine systems with a proper Lyapunov function, the classical Jurdjevic–Quinn procedure (see
Jurdjevic andQuinn, 1978) gives awell-knownandwidely usedmethod for the design of feedback controls
that asymptotically stabilize the system to some invariant set. In this procedure, all controls are in general
required to be activated, i.e. nonzero, at the same time.

In this paper we give sufficient conditions under which this stabilization can be achieved by means
of sparse feedback controls, i.e., feedback controls having the smallest possible number of nonzero
components. We thus obtain a sparse version of the classical Jurdjevic–Quinn theorem.

We propose three different explicit stabilizing control strategies, depending on the method used
to handle possible discontinuities arising from the definition of the feedback: a time-varying periodic
feedback, a sampled feedback, and a hybrid hysteresis. We illustrate our results by applying them to
opinion formation models, thus recovering and generalizing former results for such models.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction and main result

1.1. The context

Let n and m be positive integers, let f and gi, i = 1, . . . ,m be
smooth vector fields defined on Rn, and let U be a convex subset
of Rm containing a neighborhood of the origin. We consider the
control-affine system in Rn

ẋ(t) = f (x(t)) +

m∑
i=1

ui(t)gi(x(t)), (1)

where the control u = (u1, . . . , um) takes its values in U. We
assume the uncontrolled system (i.e., with u ≡ 0) to be dissipative,
meaning that there exists a smooth function V : Rn

→ R such that
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• V is radially unbounded (or proper), i.e. V−1((−∞, ℓ]) is
compact for every ℓ ∈ R;

• Lf V (x) ≤ 0 for every x ∈ Rn.

According to the well-known Jurdjevic–Quinn theorem (see
Jurdjevic & Quinn, 1978), if we assume that f (0) = 0 and that

{0} = {x ∈ Rn
| Lf V (x) = 0 and Lkf LgiV (x) = 0,

for i = 1, . . . ,m, k ∈ N},

then the smooth feedback defined by

u(x) = −(Lg1V (x), Lg2V (x), . . . , LgmV (x)) (2)

globally asymptotically stabilizes the system (1) to 0. A more
general version gives the convergence to some invariant set. The
convergence is established by the LaSalle invariance principle. This
famous result has been widely used, in various contexts, ranging
from the control of mechanical systems (see for instance Faubourg
& Pomet, 1999, 2000; Outbib & Sallet, 1992) to mathematical
biology (see, e.g., Auger et al., 2009).

In the above strategy, all components of the control are in
general active i.e., they take non-zero values. We address here
the following question: is it possible to design a similar Jurdjevic–
Quinn stabilizing feedback strategy in which only a minimal num-
ber of controls are active at each instant of time?
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This question is inspired by the works (Caponigro, Fornasier,
Piccoli, & Trélat, 2013, 2015) introducing the notion of sparse
control. The term ‘‘sparse’’ may refer to components or to time.

A componentwise-sparse control has only at most one ac-
tive component at each instant of time. Componentwise spar-
sity is motivated by many applications: when dealing with
high-dimensional problems, that is when both n ≫ 1 and m ≫

1, it may be inadequate to implement a control having m active
components. It is therefore natural to seek controls achieving the
same goal with less active components. This is the case for instance
when we want only one leader to act on a whole crowd (such as a
dog with a flock of sheep), or more generally when feasible control
strategies are required to focus on a small number of agents at each
time (see Albi, Bongini, Cristiani, & Kalise, 2016; Albi & Pareschi,
2013; Bongini, Fornasier, Rossi, & Solombrino, accepted; Borzì &
Wongkaew, 2015; Fornasier, Piccoli, & Rossi, 2014; Wongkaew,
Caponigro, & Borzì, 2015).

A problem for such a componentwise-sparse control is that
it may chatter, i.e., it may change active component infinitely
many times over a compact time-interval; such a chattering phe-
nomenonmay cause some theoretical, numerical and practical dif-
ficulties. In particular, chattering is an obstacle to well-posedness
and convergence of numerical schemes (see Zhu, Trélat, & Cerf,
2016). Time-sparsitywas then introduced in Caponigro et al. (2013,
2015) to avoid these unwanted phenomena. A time-sparse con-
trol, indeed, has a minimal gap between two switchings. In this
paper, we enforce time-sparsity by using either time-sampling or
hysteresis.

Themotivation that we have inmind is to address the control of
large groups of interacting agents, by means of control strategies
that are both as simple and sparse as possible. In Section 3.2,
we will then test the sparse control strategies that we develop
throughout on classical examples of opinion dynamics.

1.2. Sparse feedback stabilization strategies

We provide hereafter three different control strategies to
achieve stabilization by using a sparse Jurdjevic–Quinn controller,
mimicking the form (2). Starting from this idea, our aim is to
achieve sparse stabilization, by choosing sparse controls of the
form ui(x) = −LgiV (x) for some i ∈ {1, . . . ,m}, while uj(x) = 0
for j ̸= i. The key aspect for achieving sparse stabilization is to
determine the strategy to switch from one active component of
the control to another one. Indeed, discontinuity issues in the def-
inition of sparse stabilizers arise naturally, as shown for instance
in Bongini, Fornasier, Fröhlich, Haghverdi, et al. (2014), Caponigro
et al. (2013, 2015) and Caponigro, Piccoli, Rossi, and Trélat (2016),
see also Section 3.1. Here we develop three different approaches to
deal with discontinuous feedbacks, each of them leading to a dif-
ferent kind of sparse stabilizer: a time-varying periodic feedback,
a sampled feedback, and a hybrid feedback.

Let us define the three strategies that we will consider.
The absence of continuous feedback stabilizers is a classical

matter in control (as in Brockett, 1983) and a classical approach
(Samson, 1991; Sontag & Sussmann, 1980) is the introduction of
time-varying periodic with respect to time feedback controls (see
also Coron, 1992, Rosier &Coron, 1994 or section 11.2 Coron, 2007).
In this spirit, we consider a first strategy, as follows. Throughout
the article, we denote by ei the unitary vector in the ith variable.

Strategy 1 (Sparse Periodic Feedback). Fix the sampling time τ > 0
and the final control time T > 0. For the initial state x0 ∈ Rn, consider
the unique trajectory x(t) of (1) with the time-varying feedback
control u(t, x) defined as follows:

• for each time interval [(km + i − 1)τ , (km + i)τ ) ∩ [0, T ] for
some k ∈ N and i = 1, . . . ,m, apply the feedback control

u(t, x) = −LgiV (x)ei;

• for t ≥ T , apply the zero control u(t, x) = 0.

In our second sampling approach, we discretize the time hori-
zon and we apply a fixed control ui on each interval. Such a control
is chosen with a steepest descent approach, by maximizing the
instantaneous decrease of V at the beginning of the sampling
interval.

Strategy 2 (Sampled Sparse Feedback). Consider the component-wise
sparse feedback defined at any x ∈ Rn by

u(x) = −LgiV (x)ei, (3)

where i ∈ {1, . . . ,m} is the smallest integer such that

|LgiV (x)| ≥ |LgjV (x)|, ∀j ̸= i. (4)

Fix a sampling time τ > 0. Then consider the sampling solution
associated with u and the sampling time τ , namely the solution of

ẋ(t) = f (x(t)) +

m∑
i=1

ui(x(kτ ))gi(x(t)), t ∈ [kτ , (k + 1)τ ],

with k ∈ N.

The notion of stabilization associated with sampling solutions
is the stabilization in the sample-and-hold sense (see for instance
Section 7 Clarke, 2011).

Definition 1.1. Let U ⊂ Rm, let F : Rn
× U → Rn be continuous

and locally Lipschitz in x, uniformly on compact subsets of Rn
×U ,

with F (x̄, 0) = 0. We say that a feedback u : Rn
→ U stabilizes the

system ẋ = F (x, u(x)) to x̄ in the sample-and-hold sense if for every
r > 0 and R > 0 there exists τ > 0 and T > 0 depending only on r
and R and C > 0 depending only on R such that for any x0 ∈ BR(x̄)
the sampled solution of ẋ = F (x, u(x)), x(0) = x0, with sampling
time τ satisfies |x(t)| ≤ C, ∀t ≥ 0 and x(t) ∈ Br (x̄), ∀t ≥ T .

Finally, we consider an hybrid approach based on hysteresis: we
choose the control component ui maximizing the instantaneous
decrease of V . It is the only active one while it satisfies the lower
threshold condition |LgiV | > (1− ε)|LgjV | for any j ̸= i. When such
lower threshold is reached, the control switches to the new control
maximizing the instantaneous decrease of V .

Strategy 3 (Sparse Feedback with Hysteresis). Fix ε ∈ (0, 1) and
apply the following algorithm to define the trajectory x(t) of the
system:

Initialize:n = 0 and t0 = 0.
While tn < +∞apply Step n: At time tn choose i =

1, . . . ,m being the smallest integer such that

|LgiV (x(tn))| ≥ |LgjV (x(tn))|, (5)

for every j ̸= i.

• If |LgiV (x(tn))| ≥ 2t−1
n , define the switching time tn+1 as

the infimum t ∈ [tn, +∞) such that the unique solution
y(t) of ẏ = f (y) − LgiV (y)gi(y) with y(tn) = x(tn) satisfies
one of the following:

|LgiV (y(t))| ≤ t−1 (6)
|LgiV (y(t))| ≤ max

j̸=i
{(1 − ε)|LgjV (y(t))|}, (7)
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