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a b s t r a c t

This paper investigates the derivatives pricing under the existence of liquidity costs and market impact
for the underlying asset in continuous time. First, we formulate the charge for the liquidity costs and the
market impact on the derivatives prices through a stochastic control problem that aims to maximize the
mark-to-market value of the portfolio less the quadratic variationmultiplied by a risk aversion parameter
during the hedging period and the liquidation cost at maturity. Then, we obtain the derivatives price by
reduction of this charge from the premium in the Bachelier model. Second, we consider a second order
semilinear partial differential equation (PDE) of parabolic type associatedwith the control problem,which
is analytically solved or approximated by an asymptotic expansion around a solution to an explicitly
solvable nonlinear PDE. Finally, we present the numerical examples of the pricing for a variance option
and a European call option, and show comparative static analyses.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we consider the derivatives pricing under the
existence of the market impact and the liquidity costs on the
underlying asset price, which are caused by the transactions of the
hedger. After formulating the hedging cost through a stochastic
control problem, which is a generalized form of a linear-quadratic
control problem, we provide a scheme to compute the cost which
is solved analytically or approximated by an asymptotic expansion
of a second order semilinear PDE of parabolic type. This asymptotic
expansion is novel in that the solution is expanded around that
of an explicitly solvable semilinear PDE. This is different from
previous works on asymptotic expansions for derivatives pricing
(see Takahashi, 2015 and the references therein), which typically
make expansion around linear PDEs.

Estimation of the total liquidity cost during the hedging period
is the most essential factor in pricing in practice, since banks
may have losses by the price spreads which they pay in every
hedging transaction. Prediction of the effect of market impact on
the hedging cost is also important, especially when banks trade
derivatives on illiquid underlying assets such as low liquidity
stocks and illiquid foreign exchange rates. Moreover, when banks
quote a derivatives price in biddings, the estimation of these
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costs is occasionally the only differentiator among the participants.
Despite these facts, the estimation of the entire hedging cost is
usually done by the traders’ rules of thumb. This study provides
a quantitative method to estimate the cost. In addition, our model
incorporates the liquidation cost atmaturity for the two settlement
types, physical and cash settlements, and slippages on execution
volume of the underlying asset, which are observed in the trading
of illiquid assets in practice.

As for related literatures, Li and Almgren (2016) deal with
hedging an optionunder the existence of liquidity costs andmarket
impact. Guéant and Pu (2015) consider indifference pricing of a
hedger with an exponential utility on the mark-to-market value of
the hedging portfolio at maturity. After deriving the HJB equation
for the optimization problem, Guéant and Pu (2015) solve the HJB
equation numerically by finding a maximum point at every grid of
the discretized equation.

On the other hand, we adopt a different objective function from
the one inGuéant and Pu (2015) for themaximization. By assuming
the mark-to-market value of the hedging portfolio at maturity less
the terminal liquidation cost and the quadratic hedging error as
the objective function to be maximized, the problem becomes a
generalized form of the linear-quadratic control problem, where
the related HJB equation reduces to a second order semilinear PDE
of parabolic type. Then, depending on the payoff of derivatives,
we analytically solve the semilinear PDE or asymptotically expand
the solution of the PDE up to the first order. In detail, we expand
the solution around that of a solvable semilinear PDE. The zeroth
order part of the solution has a quadratic expression with respect
to a state variable, whose coefficients satisfy an ODE or a linear
PDE, and the first order part is a solution of a second order linear
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PDE. We solve the system of the ODE and PDEs through stochastic
representations of the solutions by the Feynman–Kac formula.

We note that Li and Almgren (2016) only deal with intraday
hedging on a specific date far away from the maturity, and hence
does not consider pricing options,which is generalized in our study
to hedging and pricing derivatives for the entire trading period. In
particular, we remove the crucial assumption in Li and Almgren
(2016) that the derivatives gamma is constant. This assumption
is only applicable to intraday trading of a specific trading date
far from the maturity. Note that Li and Almgren (2016) deal with
the general gamma only in a no market impact case. When the
underlying asset price is staying in the at-the-money area and
the trading date is near the maturity, calculation of the optimal
hedging strategy is particularly important since the hedging is
difficult due to large derivatives gamma for European call or put
options. Further, in contrast to Li and Almgren (2016), the liq-
uidation cost at maturity for the two settlement types, physical
and cash settlements, and slippages on execution volume of the
underlying asset are also incorporated in our model.

We remark that the derivatives gamma is the second order
differential of the value of the derivatives with respect to the
underlying asset price. The delta, the first order differential of the
value of the derivatives with respect to the underlying asset price,
is the quantity of the underlying asset to offset in order to keep
themark-to-market value of the hedger’s portfolio unaffected from
underlying asset price movements in a short period. Thus, when
the gamma is high, the hedger has to trade a large number of units
for the underlying assets every time the underlying asset price
moves. The gamma is particularly high when the trading date is
near the maturity or the underlying asset price is staying in the
area where the convexity of the derivatives payoff is large, such as
at-the-money area of the European call or put option.

While Li and Almgren (2016) do not show any numerical ex-
periment and Guéant and Pu (2015) provide only one example
withmarket impact, our study presents various cases of derivatives
prices under the existence of market impact. We provide deriva-
tives prices for a variance option in physical settlement, which
are analytically solvable, and those for a European call option in
physical settlement, which are obtained through the asymptotic
expansion. Note that the derivatives with a variance option is an
important example corresponding to a variance contract that pays
realized variance of the underlying asset price at maturity.

As for numerical methods for solving the HJB equations, Aliyu
(2003) investigates a transformation approach for solving the
equation by reducing the equation into a set of coupled algebraic-
differential inequalities. Huang,Wang, Chen, and Li (2006) propose
a semi-meshless discretization where the spatial discretization
is based on a collocation scheme using the global radial basis
functions. Beard, Saridis, andWen (1997) apply Galerkin’s approx-
imation method to a solution of the generalized HJB equation in
a deterministic control problem. Crespo and Sun (2003) present a
method for finding optimal controls by the generalized cell map-
ping and the short-time Gaussian approximation scheme.

This paper is organized as follows: Section 2 explains ourmodel.
Section 3 provides an asymptotic expansion of an associated semi-
linear PDEwith its coefficients’ computation in Section 4. Section 5
provides examples with numerical experiments in Section 6. Sec-
tion 7 compares our derivatives price with that of Guéant and Pu
(2015). Section 8 concludes.

2. Model

In this section, we introduce an optimal hedging problem for a
derivatives hedger, who is the sole rational large investor in the
market of the underlying asset, under the existence of liquidity
costs and market impact.

Since estimation of costs related to illiquidity is essential in
derivatives pricing in practice, we incorporate important factors
on illiquidity (a finite variation process for the units of orders sub-
mitted by the hedger, temporary and permanent impacts on prices,
execution slippages on the trade units, and the liquidation cost at
maturity which depends on the settlement types) in modeling.

First, we assume a finite variation process for units of orders
submitted by the hedger in Section 2.1. This is different from the
delta hedging in the Black-Sholes and the Bachelier model, since
the delta hedging in these models can be done at any instant
to offset the fluctuation of the derivatives price, and thus the
underlying asset position has an infinite total variation, which is
impossible in practice especially for illiquid markets.

Also, we take market frictions into consideration, i.e. slippages
on the trade units, temporary and permanent impacts on the mid
price, and the liquidity cost at maturity in Section 2.2.

Specifically, the hedger enters a long/short derivatives position
and starts hedging the position with the underlying asset. The
hedgermark-to-markets the portfoliowith the Bacheliermodel for
the derivatives position and with the mid price for the underlying
asset position. At inception of the trading, the hedger exchanges
the initial delta units of the underlying asset based on the Bachelier
model at mid price with the counterparty of the derivatives. We
explain these points in detail in the following subsections.

2.1. Order volume and asset price processes

The hedger aims to maximize his/her expected utility which
is risk neutral or risk averse. The hedger holds the derivatives
position at inception of the trading by payingm0 as the premium.

Let [0, T ] be the trading period, where 0 is the initial
time of the trading and T is the maturity of derivatives. Let
(Ω,F, {Ft}0≤t≤T , P) be the filtered probability space satisfying the
usual conditions.We consider an economy that consists of amoney
market account and an underlying asset. We assume that the
risk-free interest rate is zero, which implies that the price of the
moneymarket account is always 1. Let θt be a {Ft}-adapted process
which satisfies E

[∫ T
0 θ

2
s ds

]
< ∞, (Wt ,W⊥

t ) be a two dimensional
{Ft}-Brownian Motion, σ and δ be positive constants, and ϵ be
nonnegative. Let Xt be the number of units of the submitted orders
by the hedger to market makers by time t , which is differentiable
with derivative θt , that is, Xt =

∫ t
0 θsds. In other words, θt is the

number of units of orders for the underlying asset that the hedger
submits to the market makers per period, or the speed of order
placement for the underlying asset for hedging. (buy orders (when
the sign is positive) or sell orders (when the sign is negative)).

The reason why we assume absolute continuity with respect to
time for the accumulated order volume from the hedger is that
in the real world, the order volume has a finite total variation,
which corresponds to the integrability of θ ,

∫ T
0 |θs|ds < ∞. If

X includes a term of a stochastic integration with respect to a
Brownian motion, the total variation of the hedger’s position can
be infinite in the finite interval. This corresponds to an infinite
order submission volume, which is impossible in the real word.
Hence, the absolute continuity of the underlying asset position is
particularly important in trading of an illiquid asset as in Longstaff
(2001), for example.

We define the mid price process of the underlying asset Pt as

Pt = P0 + σWt + ϵXt , 0 ≤ t ≤ T . (1)

This indicates that the permanent market impact on the mid price
process ϵXt is proportional to Xt , the number of units of the orders
submitted by the hedger until time t . Thismeans that if the hedger,
the sole large trader, places a large number of buying (selling)
orders, then there is a positive (negative) value of the permanent



Download English Version:

https://daneshyari.com/en/article/4999638

Download Persian Version:

https://daneshyari.com/article/4999638

Daneshyari.com

https://daneshyari.com/en/article/4999638
https://daneshyari.com/article/4999638
https://daneshyari.com

