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a b s t r a c t

In this paper, we propose a newmethod, by designing an unknown input type state observer, to stabilize
an unstable 1-d heat equation with boundary uncertainty and external disturbance. The state observer
is designed in terms of a disturbance estimator. A stabilizing state feedback control is designed for the
observer by the backstepping transformation, which is an observer based output feedback stabilizing
control for the original system. The well-posedness and stability of the closed-loop system are concluded.
The numerical simulations show that the proposed scheme is quite effectively. This is a first result on
active disturbance rejection control for a PDE with both boundary uncertainty and external disturbance.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Disturbance attenuation or rejection is one of the major con-
cerns in modern control theory. Since from the 1970s, there are
many methods developed to cope with uncertainty in control
systems and most of these methods are generalized to systems
described by partial differential equations (PDEs). Among them,
internal model principle for special type of disturbances (Rebar-
ber & Weiss, 2003) and adaptive control for unknown parame-
ters (Krstic, 2010) are earlier active disturbance rejectionmethods
in dealing with uncertainty by exploiting estimation/cancellation
strategy. Other popular methods include sliding mode con-
trol (Guo & Jin, 2013) and robust control method (Christofides,
2001) where the completely unknown uncertainty is passively
attenuated.

The idea of estimation/cancellation from internal model prin-
ciple and adaptive rejection control is later developed in large
scale as active disturbance rejection control (ADRC) (Han, 2009)
where not only external disturbance but also internal uncertainty
are estimated in terms of input and output. The uncertainties dealt
with by ADRC are much more complicated. It can be the cou-
pling between unknown internal system dynamics, the external
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disturbance, and the superadded unknown part of control input,
or even if whatever the part that is hardly dealt with by practition-
ers (Guo & Zhao, 2015). ADRC has been applied to state feedback
stabilization for PDEs with external disturbance (Guo & Jin, 2013).
The output feedback stabilization for PDEs by ADRC is, however,
very complicated. In Guo and Jin (2015), an unknown input ob-
server is first designed for stabilization of 1-d wave equation with
external disturbance. However, the observer in Guo and Jin (2015)
was designed by variable structure control method, which is very
technical and brings many mathematical difficulties. In addition,
the extended state observer (ESO) used in ADRC utilizes usually the
high gain which is very restrictive from engineering control point
of view. So there are several challenges in applying ADRC to PDEs in
following typical situations: (a) the total disturbance contains not
only external disturbance but also internal uncertainty; (b) output
feedback instead of state feedback; (c) the high gain problem in
ESO; (d) a finite order derivative of total disturbance is required to
be bounded.

In this paper, we meet these challenges by considering un-
known type state observer and output feedback stabilization for
the following one-dimensional heat equation with boundary un-
known nonlinear uncertainty and external disturbance:⎧⎪⎪⎪⎨⎪⎪⎪⎩

wt (x, t) = wxx(x, t), x ∈ (0, 1), t > 0,
wx(0, t) = −qw(0, t), t ≥ 0,
wx(1, t) = f (w(·, t)) + d(t) + u(t), t ≥ 0,
w(x, 0) = w0(x), 0 ≤ x ≤ 1,
y(t) = (w(0, t), w(1, t)) , t ≥ 0,

(1)
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where q ∈ R, y(t) is the output (measurement), u(t) is the input
(control), w0(x) is the initial value, f (·) is an unknown nonlinear
function that represents the boundary uncertainty, and d(t) is the
external disturbance. The ‘‘f (w(·, t)) + d(t)’’ is called the ‘‘total
disturbance’’ in active disturbance rejection control. When q > 0,
the uncontrolled system (1) may become unstable. For the sake of
simplicity, we drop the obvious time and spatial domains in the
rest of the paper.

The model (1) is a general 1-d heat equation with boundary
convection. Let k be the thermal conductivity of a solid rod, and
let h be the convection heat transfer coefficient which varies with
the type of flow, the geometry of the body and flow passage area,
the physical properties of the fluid, the average surface and fluid
temperatures, and many other parameters. The pure convection
boundary condition, physically meaning that the temperature gra-
dient within the solid at the surface is coupled to the convective
flux at the solid–fluid interface, is prescribed by

− kwx(∂, t) = ±h(w(∂, t) − w∞(t)),

where ∂ = 0 or 1 represents the boundary and w∞(t) is the am-
bient fluid temperature. The special case of zero fluid temperature
w∞(t) = 0, given by

− kwx(∂, t) = ±hw(∂, t),

represents convection into a fluid medium at zero temperature,
noting that a common practice is to redefine or shift the tempera-
ture scale such that the fluid temperature is now zero. When k, h,
and w∞(t) are not known, the convection boundary condition at
x = 1 leads to the boundary condition of system (1) at x = 1.
For more details of physical modeling of heat equation, we refer
to Hahn and Özisik (2012).

To illustrate the physical model, we give a sketch of (1) with
q = 0 in Fig. 1 which depicts flow of heat in a rod that is insulated
everywhere except the two ends, where the heat of the right end is
controlled by a steam chest with placement of a thermometer and
the left end is insulated.

Heat equation with unstable term or source term has been
extensively studied by the method of backstepping. Examples can
be found in Baccoli, Pisano, andOrlov (2015),Meurer (2012), Krstic
(2006), Krstic and Smyshlyaev (2008) and Smyshlyaev and Krstic
(2007), to name just a few. The backstepping approach is powerful
and is still valid to other distributed parameter systems that are
corrupted by disturbance or unknown parameters (Aamo, 2013;
Krstic, 2010). There are many other works for the parabolic sys-
tems control. For classical output regulation theory for distributed
parameter system, we refer to (Aulisa & Gilliam, 2016). Recently,
the backstepping-based robust output regulation for boundary
controlled parabolic PDEs was discussed in Deutscher (2016). In
addition, there exist othermethods to copewith disturbance or un-
known parameters such as the slidingmode control (Orlov, Pisano
& Usai, 2011), unknown input observer based control (Chauvin,
2012), and the internal model principle (Rebarber &Weiss, 2003).
Our work, however, is different from the existing ones. The main
objective of this paper is to propose a new method to cope with
the control-matched disturbance that consists of not only exter-
nal disturbance but also boundary uncertainty. The approach is
inspired by the method of ADRC and is different from the existing
results in papers for instance (Aamo, 2013; Chauvin, 2012; Guo
& Jin, 2015) where the unknown input observers for distributed
parameter systems have been designed.

Weproceed as follows. In Section 2,we first present a target sys-
tem as a preliminary for the design of state observer. An unknown
input type infinite-dimensional state observer is proposed in Sec-
tion 3, where the estimation/cancellation strategy in ADRC is used
without invoking high gain. The observer could lead immediately
to a total disturbance estimator. A state feedback stabilizing control

Fig. 1. One-dimensional heated rod.

for the observer is designed in Section 4,which is an observer based
feedback control for original system. To do this, the backstepping
transformation is applied. Section 5 is devoted to well-posedness
and asymptotic stability for the closed-loop system. Numerical
simulations are presented in Section 6 to validate the theoretical
results, followed by the concluding remarks in Section 7.

2. Preliminary: target system for observer

We first consider a stable heat equation:{ẑt (x, t) = ẑxx(x, t),
ẑx(0, t) = c0ẑ(0, t), ẑx(1, t) = G(t),
ẑ(x, 0) = ẑ0(x),

(2)

where c0 > 0 is a constant, ẑ0(x) is the initial value, and G ∈

L2loc(0, ∞) is a given function. System (2) can be written as an
evolution equation in H := L2(0, 1):

d
dt

ẑ(·, t) = Aẑ(·, t) + BG(t), (3)

whereB = δ(x−1)with δ(·) theDirac distribution, and the operator
A is given by{

[Af ](x) = f ′′(x), ∀ f ∈ D(A),
D(A) =

{
f ∈ H2(0, 1) | f ′(0) = c0f (0), f ′(1) = 0

}
.

(4)

Lemma 2.1. For any ẑ0 ∈ H and G ∈ L2loc(0, ∞), there exists a
unique solution ẑ ∈ C(0, ∞;H) to system (2) such that the following
statements hold:
(i) If we assume further that G ∈ L∞(0, ∞), then there exists a positive
constant LB, independent of t, such that

sup
t∈[0,∞)

∥ẑ(·, t)∥H ≤ ∥ẑ0∥H + LB∥G∥L∞(0,∞) < +∞; (5)

(ii) If G(t) → 0 as t → ∞, then

∥ẑ(·, t)∥H → 0 as t → ∞. (6)

Proof. Inequality (5) is straightforward by noticing that A gener-
ates a C0-semigroup eAt of contractions on H and B is admissible
for eAt by invoking Remark 2.6 of Weiss (1989). The convergence
(6) is a direct result in Feng and Guo (2014) or Guo and Jin (2013)
where the admissibility of B and Remark 2.6 of Weiss (1989) are
also used. □

Next, consider the following coupled heat system⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
εt (x, t) = εxx(x, t),
εx(0, t) = c0ε(0, t), εx(1, t) = d̃x(1, t),
d̃t (x, t) = d̃xx(x, t),
d̃x(0, t) = c0d̃(0, t), d̃(1, t) = 0,
ε(x, 0) = ε0(x), d̃(x, 0) = d̃0(x),

(7)

where (ε0(x), d̃0(x)) is the initial value. System (7) will serve as a
target system for the observer design in next section. We consider
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