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a b s t r a c t

In this paper, we investigate the stochastic stability of linear hyperbolic conservation laws governed by
a finite-state Markov chain. Both system matrices and boundary conditions are subject to the Markov
switching. The existence and uniqueness of weak solutions are developed for the stochastic hyperbolic
initial–boundary value problem. By means of Lyapunov techniques some sufficient conditions are ob-
tained by seeking the balance between the boundary condition and the transition probability of the
Markov process. Particularly, boundary feedback control of a stochastic traffic flow model is developed
for the freeway transportation system by integrating the on-ramp metering with the speed limit control.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Many physical or engineering processes may be represented by
the hyperbolic partial differential equations (PDEs) of conserva-
tion laws in one space dimension, such as Saint-Venant equation
for open channels (de Halleux, Prieur, Coron, d’Andréa Novel, &
Bastin, 2003), Euler equation for gas pipes (Gugat, Dick, & Leuger-
ing, 2011), and Aw–Rascle equation for road traffic (Aw & Rascle,
2000). In such systems, the system matrices and the boundary
conditions can both be subject to abrupt changes in their structures
and parameters induced by the external causes or the internal
mechanism. For example, in the freeway transportation systems,
it can be the phase transition of traffic modes (Colombo, 2003), or
the random flux at the boundaries (Haut, Bastin, Coron, & d’Andréa
Novel, 2007). In such situations, it is more realistic to model the
dynamic behaviors of these processes with switched hyperbolic
systems.

Many results have beenmade for boundary stability of switched
hyperbolic systems. In Amin, Hante, and Bayen (2012), the
exponential stability is given under arbitrary switching using the
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propagation of solutions along the characteristics. In Prieur, Girard,
and Witrant (2014), using Lyapunov techniques some sufficient
conditions are obtained for the exponential stability uniformly.
Switching boundary control for semilinear hyperbolic balance
equations is considered in Hante, Leugering, and Seidman (2009).
In Lamare, Girard, and Prieur (2015), stabilizing switching con-
trollers are developed based on the steepest decent selection of the
Lyapunov function.

In this paper, we consider a class of switched hyperbolic sys-
tems, named the Markov jump linear hyperbolic (MJLH) systems,
in which mode switching is governed by a Markov chain and
all modes are linear hyperbolic conservation laws. The boundary
stabilization for hyperbolic systems (Coron, d’Andréa Novel, &
Bastin, 2007; Li, 1994) and the stochastic stability for the Markov
jump linear (MJL) systems of continuous-time (Costa, Fragoso, &
Todorov, 2013) or discrete-time cases (Boukas, 2005) have been
studied for many years independently. The main contribution of
this work is that the boundary stochastic stability for the MJLH
systems is firstly obtained by means of Lyapunov techniques. The
matrix inequality condition is based on the balance between the
boundary condition of the hyperbolic conservation laws and the
transition probability of the Markov process.

A second contribution of our work is the application to the
boundary control of freeway traffic. Due to the existence of a large
number of uncertainties, such as demand variability and capacity
decrease, the local freeway traffic may randomly lie in the free-
flow mode or in the congestion mode (Boel & Mihaylova, 2006;
Sumalee, Zhong, Pan, & Szeto, 2011). Thenwe develop a two-mode
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MJLH model to represent the quasilinear Aw–Rascle equation and
design boundary feedback strategies by integrating the on-ramp
meteringwith the speed limiting control. Theoretical contributions
guarantee the stochastic exponential convergence of the MJLH
traffic flow model, even with different transition probabilities of
the Markov chain.

This paper is organized as follows. The class of MJLH systems
and the wellposedness of weak solutions are given in Section 2.
In Section 3, the main result on the sufficient conditions of the
exponentially mean-square stable are derived for MJLH systems.
Numerical computation of the conditions is discussed in Section 4.
Finally, in Section 5, as a matter of illustration, an application of
boundary feedback control of freeway traffic based on the MJLH
traffic flow model is presented.
Notation: R+, Rn, Rn×n are the sets of non-negative reals, n-order
vectors and matrices, respectively. The set of diagonal positive
matrices inRn×n is denoted byDn

+
. Given a matrix A, the transpose

matrix is denoted as A⊤, λmax(A), ρ(A) are the largest real parts of
all eigenvalues and the spectral radius of A. A < (≤)B denotes
B − A is a positive definite (semi-definite) matrix. Given two real
values t1 and t2, t1 ∧ t2 denotes the minimal value between t1 and
t2. The Euclidean norm in Rn is denoted by |·| and the associated
matrix norm is ∥ · ∥. Given a function g : [0, 1] → Rn, its L2-

norm is ∥g∥L2(0,1) =

√∫ 1

0
|g(x)|2dx. We call L2(0, 1) the space of

all measurable functions g(x) for which ∥g∥L2(0,1) < ∞.

2. Markov jump linear hyperbolic systems

Let (Ω,F, Pr) be a complete probability space equipped with
a filtration {Ft; t ∈ R+} satisfying the usual hypotheses, that is,
a right-continuous filtration augmented by all null sets in the Pr-
completion of F .

We consider a homogeneous Markov process {σ (t); t ∈ R+}

adapted to the filtration {Ft; t ∈ R+}, with right-continuous
trajectories and taking values on the set S = {1, 2, . . . ,N}, where
N is a positive integer number. The infinitesimal generator Π ∈

RN×N of Markov process σ (t) is given by

Pr{σ (t + ∆t) = j|σ (t) = i}

=

{
πij∆t + o(∆t), if i ̸= j
1 + πii∆t + o(∆t), if i = j (1)

where ∆t > 0 is constant (it is seen as a small time increment)
and o(·) is a function satisfying lim∆t→0

o(∆t)
∆t = 0. Here πij ≥ 0, for

i ̸= j, is the transition rate from mode i at time t to mode j at time
t + ∆t , while

πii = −

N∑
j=1,j̸=i

πij.

Let {τk; k = 0, 1, . . .} be the successive sojourn times between
jumps, then tk =

∑k−1
l=0 τl, for k = 1, 2, . . . , be the waiting time

for the kth jump with t0 = 0.
Stating in mode σ (0) = i, the process sojourns there for a

duration of time that is exponentially distributed with parameter
−πii. The process then jumps to mode j ̸= i with probability −

πij
πii

,
and the sojourn time in mode j is exponentially distributed with
parameter −πjj, and so on. We further assume that the Markov
process is irreducible. Under this condition, σ (t) has a unique
stationary probability distribution γ = [γ1 . . . γN ]

⊤, which can be
determined by solving the following linear equation γ ⊤Π = 0
subject to

∑N
j=1γj = 1 and γj > 0, for all j ∈ S (Costa et al., 2013

Definition 2.9).

We consider the following Markov jump linear hyperbolic
(MJLH for short) conservation laws of the form

∂tξ (x, t) + Λσ (t)∂xξ (x, t) = 0, (2)

where t ∈ R+, x ∈ [0, 1], ξ : [0, 1] × R+ → Rn is the system
state, and the Markov process σ (t) : R+ → S is a stochastic
switching signal deciding the current operationmode. For all i ∈ S ,
the system matrix Λi ∈ Rn×n is a diagonal matrix with non-zero
diagonal entries such that

Λi = diag{λi
1, λ

i
2, . . . , λ

i
n},

with λi
j < 0 for j ∈ {1, . . . ,mi} and λi

j > 0 for the other j ∈

{mi + 1, . . . , n}.
According to the sign of each characteristic velocity λi

j,
j = {1, . . . , n}, i ∈ S , we introduce the notation ξ i

−
(·) =

[ξ1(·), . . . , ξmi (·)]
⊤, ξ i

+
(·) = [ξmi+1(·), . . . , ξn(·)]⊤, and thus ξ =

[ξ i
−
, ξ i

+
]
⊤, for all i ∈ S.

ForMJLH system (2), the boundary condition also is a stochastic
process, corresponding to the Markov chain σ (t), written as[

ξ
σ (t)
− (1, t)

ξ
σ (t)
+ (0, t)

]
= Gσ (t)

[
ξ

σ (t)
− (0, t)

ξ
σ (t)
+ (1, t)

]
, (3)

where Gi is a matrix in Rn×n, i ∈ S. Let us introduce the matrices
Gi

−−
in Rmi×mi , Gi

−+
in Rmi×(n−mi), Gi

+−
in R(n−mi)×mi , and Gi

++
in

R(n−mi)×(n−mi) such that Gi =

[
Gi

−− Gi
−+

Gi
+− Gi

++

]
.

We consider the initial condition given by

ξ (x, 0) = ξ 0(x), x ∈ (0, 1), (4)

for a given function ξ 0(·) ∈ L2(0, 1) and a initial operation mode
σ (0) ∈ S.

For each mode i ∈ S , as respective hyperbolic equation (2)–(4)
holds a sojourn for a duration of time {τk; k = 0, 1, . . .}, the exis-
tence and uniqueness of solution in the set C0([0, ∞),H1(0, 1)) ∩

C1([0, ∞), L2(0, 1)) with initial condition in L2(0, 1) is quite clas-
sical, see e.g. Bastin and Coron (2016, Theorem A.4). Recently,
the notion of solutions for an initial–boundary value problem of
switched hyperbolic systems has been developed within the usual
Lebesgue almost everywhere equivalence class, see e.g. Amin et al.
(2012), and Prieur et al. (2014, Proposition 3.1).

We now provide an existence and uniqueness result for the
solutions of the MJLH system (2)–(4).

Proposition 1. The MJLH system (2)–(3) admits a unique solution
ξ = ξ (·, t), t ∈ R+, such that E

{
∥ξ (·, t)∥L2(0,1)

}
< ∞, for any initial

condition ξ 0
∈ L2(0, 1) and any initial operation mode σ (0) ∈ S ,

where E {·} stands for the mathematical expectation.

Proof. Recall that almost every sample path of stochastic process
σ (t), t ≥ 0, is a right-continuous step functionwith a finite number
of jumps in any finite time interval. Then there exists a sequence
{tk; k = 0, 1, . . .} of stopping times such that t0 = 0, limk→∞tk =

∞, and σ (t) = σ (tk) on tk ≤ t < tk+1 for any k ≥ 0.
We then build iteratively the solution between successive stop-

ping times. Let T ∈ R+ be arbitrary, we first consider the MJLH
system (2)–(3) on the time interval t ∈ [0, t1 ∧ T ] which becomes

∂tξ (x, t) + Λσ (0)∂xξ (x, t) = 0, (5)

for all x ∈ (0, 1) with the boundary condition of the form[
ξ

σ (0)
− (1, t)

ξ
σ (0)
+ (0, t)

]
= Gσ (0)

[
ξ

σ (0)
− (0, t)

ξ
σ (0)
+ (1, t)

]
, (6)

and the initial condition ξ 0
∈ L2(0, 1). For any initial mode σ (0) ∈

S , by Bastin and Coron (2016, Theorem A.4), the initial–boundary



Download English Version:

https://daneshyari.com/en/article/4999642

Download Persian Version:

https://daneshyari.com/article/4999642

Daneshyari.com

https://daneshyari.com/en/article/4999642
https://daneshyari.com/article/4999642
https://daneshyari.com

