
Automatica 86 (2017) 46–52

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

Second order sliding mode control for nonlinear affine systems with
quantized uncertainty✩

Gian Paolo Incremona a, Michele Cucuzzella b, Antonella Ferrara b

a Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
b Dipartimento di Ingegneria Industriale e dell’Informazione, University of Pavia, Via Ferrata 3–5, 27100, Pavia, Italy

a r t i c l e i n f o

Article history:
Received 29 May 2016
Received in revised form 23 July 2017
Accepted 3 August 2017

Keywords:
Sliding mode control
Nonlinear systems
Uncertain dynamic systems
Quantized signals
Sliding surfaces

a b s t r a c t

This paper dealswith thedesign of a Second-Order SlidingMode (SOSM) control algorithmable to enhance
the closed-loop performance depending on the current working conditions. The novelty of the proposed
approach is the design of a nonsmooth switching line, based on the quantization of the uncertainties
affecting the system. The quantized uncertainty levels allow one to define nested box sets in the auxiliary
state space, i.e., the space of the sliding variable and its first time derivative, and select suitable control
amplitudes for each set, in order to guarantee the convergence of the sliding variable to the sliding
manifold in a finite time. The proposed algorithm is theoretically analyzed, proving the existence of an
upperbound of the reaching time to the origin through the considered quantization levels.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays, Sliding Mode Control (SMC) is one of the most
effective solution to control systems characterized by hard uncer-
tainties (Edwards & Spurgeon, 1998; Utkin, 1992). SMC is able to
guarantee robustness against a wide class of disturbances, above
all in case ofmatched uncertainties, i.e., uncertainties acting on the
same channel of the control variable (Edwards & Spurgeon, 1998).
Yet, because of the discontinuous nature of the control law, the
so-called chattering effect (Boiko, Fridman, Pisano, & Usai, 2007;
Levant, 2010) can be produced, i.e., high frequency oscillations of
the controlled variable which can be disturbing for the actuators.

However, in the literature, several methods to perform chatter-
ing alleviation have been proposed, such as filtered sliding mode
(Tseng & Chen, 2010), boundary layer sliding mode (Burton &
Zinober, 1986) or fractional order sliding mode control (Corradini,
Giambò, & Pettinari, 2015). Among these methodologies, the so-
called Higher Order Sliding Mode (HOSM) control approaches,
which involve not only the sliding variable, but also its time deriva-
tives up to a certain order r − 1 (Bartolini, Ferrara, & Usai, 1997;
Bartolini, Ferrara, Usai, & Utkin, 2000; Dinuzzo & Ferrara, 2009b),
consist in confining the discontinuity, necessary to steer the so-
called sliding variable to zero, to a derivative of the control variable,
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so that the control signal actually fed into the plant is continuous.
Because of the continuous nature of the control action, HOSM
control approaches are appropriate to be applied even to electrical,
electromechanical ormechanical systems (Bartolini, Pisano, Punta,
& Usai, 2003; Utkin, Guldner, & Shi, 1999), as testified by Capisani
and Ferrara (2012), Cucuzzella, Incremona, and Ferrara (2015), Cu-
cuzzella, Incremona, and Ferrara (2017), Cucuzzella, Rosti, Cavallo,
and Ferrara (2017), Cucuzzella, Trip, De Persis, and Ferrara (2017),
Ferrara and Incremona (2015), Incremona, Cucuzzella, and Ferrara
(2016) and Incremona, De Felici, Ferrara, and Bassi (2015).

In the classical formulation of SMC, the uncertain terms are
assumed to be bounded with known bounds. It is also reasonable
assuming that uncertainties can be linked to the system states
because of state-dependent disturbances or different levels of
confidence in the system model in different operating conditions
(Tanelli & Ferrara, 2013). This can imply a quantization of the un-
certain terms such that different compact box sets can be defined
in the state space. In the paper, the convergence to the origin
of the auxiliary state space is proved, and an upperbound of the
convergence time with respect to the worst realization of the
uncertainties is analytically provided.

The present proposal provides a simple way to tune the ampli-
tude of the discontinuous control action depending on the uncer-
tainties quantization levels. Other interesting tuning mechanisms
are presented in Pisano, Tanelli, and Ferrara (2015) and Tanelli and
Ferrara (2013). Yet, they differ from the proposed approach since
they are based on the a priori subdivision of the auxiliary state
space into regions. Moreover, they rely on the use of the Subop-
timal SOSM control law, while in this paper the SOSM control law
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with optimal reaching (Dinuzzo & Ferrara, 2009b) is used inside
each level, so that for each uncertainty quantization level a min-
imum time passage through the corresponding set is featured by
the auxiliary state trajectory. In fact, the corresponding nonsmooth
surface is the combination of different switching lineswhich result
in being attractive with optimal reaching for the auxiliary state
trajectories.

The paper is organized as follows. In Section 2 the problem is
formulated, while in Section 3 the proposed strategy based on a
nonsmooth switching line is presented. In Section 4 the stability
analysis is discussed and an academic example is reported in
Section 5. Some conclusions in Section 6 end the paper.

2. Problem formulation

Consider a plant which can be described by the single-input
system affine in the control variable

ẋ(t) = a(x(t)) + b(x(t))u(t) (1)

where x ∈ Ω (Ω ⊂ Rn bounded) is the state vector, the value of
which at the initial time instant t0 is x(t0) = x0, and u ∈ R is a scalar
input subject to the saturation [−α, α], while a(x(t)) : Ω → Rn

and b(x(t)) : Ω → Rn are uncertain functions of class C1(Ω).
Define a suitable output function σ (x) : Ω → R of class C2(Ω).

This functionwill play the role of ‘‘sliding variable’’ in the following,
that is σ (x) is the variable to steer to zero in a finite time in order
to solve the control problem, according to classical sliding mode
control theory (Utkin, 1992). The sliding variable σ (x) has to be
selected such that the following assumption holds.

Assumption 1. If u(t) in (1) is designed so that, in a finite time tr
(ideal reaching time), σ (x(tr)) = 0 ∀ x0 ∈ Ω and σ (x(t)) = 0 ∀ t >

tr, then ∀ t ≥ tr the origin is an asymptotically stable equilibrium
point of (1) constrained to σ (x(t)) = 0.

Note that Assumption 1 guarantees that the sliding mode con-
trol law to design is stabilizing.

Now consider the input–output map{ẋ(t) = a(x(t)) + b(x(t))u(t)
y(t) = σ (x(t))
x(t0) = x0 .

(2)

Assume that (2) is complete inΩ and has a uniform relative degree
equal to 2. Moreover, assume that system (2) admits a global
normal form in Ω , i.e., there exists a global diffeomorphism of the
form Φ(x) : Ω → ΦΩ ⊂ Rn,

Φ(x) =

(
Ψ (x)
σ (x)

a(x) · ∇σ (x)

)
=

(
xr
ξ

)
Ψ : Ω → Rn−2, xr ∈ Rn−2, ξ =

(
σ (x)
σ̇ (x)

)
∈ R2 ,

such that,⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ẋr = ar(xr , ξ ) (a)

ξ̇1 = ξ2 (b)

ξ̇2 = f (xr , ξ ) + g(xr , ξ )u (c)

y = ξ1 (d)

ξ (t0) = ξ0 (e)

(3)

with

ar =
∂Ψ

∂x
(Φ−1(xr, ξ ))a(Φ−1(xr, ξ ))

f = a(Φ−1(xr, ξ )) · ∇(a(Φ−1(xr, ξ )) · ∇σ (Φ−1(xr, ξ )))
g = b(Φ−1(xr, ξ )) · ∇(a(Φ−1(xr, ξ )) · ∇σ (Φ−1(xr, ξ )))

where the obvious dependence on time is omitted. Note that, as a
consequence of the uniform relative degree assumption, it yields

g(xr, ξ ) ̸= 0, ∀ (xr, ξ ) ∈ ΦΩ . (4)

In the literature, see for instance Bartolini, Ferrara, andUsai (1998),
making reference to the previous system, subsystem (3)(b)–(e) is
called ‘‘auxiliary system’’. Since ar(·), f (·), g(·) (the latter is assumed
to be positive definite, for the sake of simplicity) are continuous
functions and ΦΩ is a bounded set, one has that

∃ F > 0 : |f (xr, ξ )| ≤ F ∀ (xr , ξ ) ∈ ΦΩ (5)
∃ Gmax > 0 : g(xr, ξ ) ≤ Gmax ∀ (xr, ξ ) ∈ ΦΩ (6)
∃ Gmin > 0 : g(xr, ξ ) ≥ Gmin ∀ (xr, ξ ) ∈ ΦΩ . (7)

Note that, instead of (6) and (7), if g(·) was negative definite, one
could analogously have the opposite inequalities. Moreover, the
following assumption on the internal dynamics (3)(a) holds.

Assumption 2. Given the auxiliary system (3), the internal dynam-
ics (3)(a) does not present finite time escape phenomena and the
corresponding zero dynamics ar(xr, 0) is globally asymptotically
stable.

Relying on (3)–(7) and Assumptions 1 and 2, the control prob-
lem to solve is hereafter introduced.

Problem 1. Design a feedback control law

u(t) = κ(σ (x(t)), σ̇ (x(t))) (8)

such that ∀ x0 ∈ Ω , ∃ tr ≥ 0 : σ (x(t)) = σ̇ (x(t)) = 0, ∀ t ≥ tr in
spite of the uncertainties.

The proposed control strategy has the merit to allow one to
reformulate the control problem of stabilizing a nonlinear uncer-
tain system, into a simpler control problem: that of stabilizing
the auxiliary system (3)(b)–(e) forced by a bounded input. In fact,
it is sufficient to suitably select the sliding variable σ according
to Assumption 1, to be able to determine (3)(b)–(e), so that the
explicit knowledge of Ψ is not actually necessary to solve the
problem.

Remark 1. Note that, if the sliding variable σ is steered to zero, this
directly implies the asymptotic stability of the origin of the closed-
loop system (1) since, by assumption, the zero dynamics (3)(a) of
system (1), transformed via the diffeomorphism Φ(x), is globally
asymptotically stable.

In the present work, in order to reduce the control effort of the
input fed into the plant, relying on the 2-relative degree of system
(2), a gain tuning mechanism is combined with the SOSM control
strategy giving rise to a new control algorithm.

3. Nonsmooth switching line based SOSM control

We are now in a position to introduce the proposed SOSM
control algorithm based on a nonsmooth switching line.

3.1. Design of the switching line

Making reference to the SOSM algorithmwith optimal reaching
presented in Dinuzzo and Ferrara (2009b), let αr be the reduced
control amplitude, which is the minimum amplitude of σ̈ in pres-
ence of the maximum realization of the uncertainty terms when
u = ±α is applied, i.e.,

αr = Gminα − F > 0 , (9)
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