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a b s t r a c t

This article is concerned with an optimal control problem derived by mean-field forward–backward
stochastic differential equation with noisy observation, where the drift coefficients of the state equation
and the observation equation are linear with respect to the state and its expectation. The control problem
is different from the existing literature concerning optimal control for mean-field stochastic systems, and
has more applications in mathematical finance, e.g., asset–liability management problem with recursive
utility, systematic risk model. Using a backward separation method with a decomposition technique,
two optimality conditions along with two coupled forward–backward optimal filters are derived. Linear–
quadratic optimal control problems for mean-field forward–backward stochastic differential equations
are studied.

© 2017 Published by Elsevier Ltd.

1. Introduction

1.1. Notation

We denote by T > 0 a fixed time horizon, by Rm the m-
dimensional Euclidean space, by |·| (resp. ⟨·, ·⟩) the norm (resp.
scalar product) in a Euclidean space, by A⊤ (resp. A−1) the trans-
position (resp. reverse) of A, by Sm the set of symmetric m × m
matrices with real elements, by fx the partial derivative of f with
respect to x, and by C a positive constant, which can be different
from line to line. Let (Ω,F , (Ft )0≤t≤T ,P) be a complete filtered
probability space, on which are given an Ft-adapted standard
Brownian motion (wt , w̃t ) with values in Rr+r̃ and a Gaussian
random variable ξ with mean µ0 and covariance matrix σ0. (w, w̃)
is independent of ξ . If A ∈ Sm is positive (semi) definite, we
write A > (≥)0. If x : [0, T ] → Rm is uniformly bounded, we
write x ∈ L ∞(0, T ;Rm). If x : Ω → Rm is an FT -measurable,
square-integrable random variable, we write x ∈ L 2

F (Rm). If x :

[0, T ] ×Ω → Rm is an Ft-adapted, square-integrable process, we
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write x ∈ L 2
F (0, T ;Rm). We also adopt similar notations for other

processes, Euclidean spaces and filtrations.

1.2. Motivation

Now consider an asset–liabilitymanagement problem of a firm.
Let the dimension n = k = r = r̃ = 1. Denote by E the
expectationwith respect to P, by vt the control strategy of the firm,
by xvt the cash-balance, and by l̄vt the liability process. Norberg
(1999) described the liability process by a Brownian motion with
drift. The model, however, is not just the one we want. In fact, it is
possible that the control strategy and themean of the cash-balance
can influence the liability process, due to the complexity of the
financial market and the risk aversion behavior of the firm. Such
an example can be found in Huang, Wang, and Wu (2010), where
the liability process depends on a control strategy (e.g., capital
injection or withdrawal) of the firm. Along this line, we proceed to
improve the liability process here. Suppose that l̄vt satisfies a linear
stochastic differential equation (SDE, in short)

− dl̄vt = (ātExvt + btvt + b̄t )dt + ctdwt .

Here ā, b, b̄, c , a, f , g and h are deterministic anduniformly bounded.
b̄t and ct denote the liability rate and the volatility coefficient,
respectively. Suppose that the firm owns an initial investment ξ ,
and only invests in amoney accountwith the compounded interest
rate at . Then the cash-balance of the firm is

xvt = e
∫ t
0 asds

(
ξ −

∫ t

0
e−

∫ s
0 ardrdl̄vs

)
.
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It follows from Itô’s formula that{
dxvt =

(
atxvt + ātExvt + btvt + b̄t

)
dt + ctdwt ,

xv0 = ξ .

Note that, if bt = 1, b̄t = 0, at = −āt = const. and ct = const.,
then the cash-balance equation is just the systematic risk model of
inter-bank borrowing and lending introduced in Carmona, Fouque,
and Sun (2015). Besides the systematic risk model, the equation
can also be reduced to an air conditioning controlmodel in energy-
efficient buildings. See, e.g., Example 2 in Djehiche, Tembine, and
Tempone (2015) for more details.

Due to the discreteness of account information, it is possible for
the firm to partially observe the cash-balance by the stock price⎧⎨⎩dSvt = Svt

[(
ftxvt + gt +

1
2
h2
t

)
dt + htdw̃t

]
,

Sv0 = 1.

Set Y vt = log Svt . It holds that Y
v is governed by{

dY vt =
(
ftxvt + gt

)
dt + htdw̃t ,

Y v0 = 0.

Suppose that the firm has triple performance objectives. The
first two ones are to minimize the total cost of v over [0, T ]

and to minimize the risk of xvT . Assume that the risk is mea-
sured by E

[
(xvT − ExvT )

2
]
. The third one is to maximize the util-

ity yvt resulting from v. Without loss of generality, define yvt =

E
[
xvT +

∫ T
t G(s, yvs , vs)ds|Ft

]
, where G is Lipschitz continuous

with respect to (y, v), and G(s, 0, 0) ∈ L 2
F (0, T ;R) for 0 ≤ s ≤ T .

We emphasize that the current utility yvt depends not only on the
instantaneous control vt , but also on the future utility and control
(yvs , vs), t ≤ s ≤ T . This shows the difference between the utility
yv and the standard additive utility, and hence, yv is called as
a stochastic differential recursive utility. Then the asset–liability
management problem with recursive utility is stated as follows.
Problem (AL). Find a σ {Y vs ; 0 ≤ s ≤ t}-adapted and square-
integrable process vt such that

J[v] =
1
2
E

[∫ T

0
Btv

2
t dt + H(xvT − ExvT )

2
− 2Nyv0

]
is minimized. Here B > 0 and B−1 are deterministic and uniformly
bounded. H and N are non-negative constants. yv0 is the value of yvt
at time 0.

According to El Karoui, Peng, and Quenez (1997), the recursive
utility yvt admits the backward SDE (BSDE, in short){

−dyvt = G(t, yvt , vt )dt − zvt dwt − z̃vt dw̃t ,

yvT = xvT .

With the BSDE, Problem (AL) can be rewritten as an optimal control
problem derived by forward–backward SDE (FBSDE, in short) with
noisy observation.

1.3. Problem statement

Motivated by the examples, we study an optimal control prob-
lem for FBSDEwith noisy observation. Consider a controlled FBSDE⎧⎪⎪⎪⎨⎪⎪⎪⎩

dxvt =
(
atxvt + ātExvt + b(t, vt )

)
dt + ctdwt ,

−dyvt = (αtxvt + ᾱtExvt + βtyvt + β̄tEyvt + γtzvt
+ γ̄tEzvt + γ̃t z̃vt + ¯̃γ tEz̃

v
t + ψ(t, vt ))dt

− zvt dwt − z̃vt dw̃t ,

xv0 = ξ, yvT = ρxvT + ρ̄ ExvT ,

where (xv, yv, zv, z̃v) is the state, v is the control, and (w, w̃) is the
Brownian motion. Since the mean of the state influences the state

equation, we call the equation a mean-field FBSDE, or a McKean–
Vlasov FBSDE. Assume that (xv, yv, zv, z̃v) is partially observed
through{
dY vt =

(
ftxvt + f̄tExvt + g(t, vt )

)
dt + htdw̃t ,

Y v0 = 0.

The cost functional is

J[v] = E
[∫ T

0
l(t, xvt ,Ex

v
t , vt )dt + φ(xvT ,Ex

v
T ) + ϕ(yv0)

]
.

Here vt is required to be σ {Y vs ; 0 ≤ s ≤ t}-adapted and to satisfy
Esup0≤t≤T |vt |

2 < +∞. a, ā, b, c , α, ᾱ, β , β̄ , γ , γ̄ , γ̃ , ¯̃γ , ψ , ρ, ρ̄,
f , f̄ , g , h, l, φ and ϕ will be specified in Section 2. Our problem is
to select an admissible control v to minimize J[v]. We denote the
mean-field type control problem by Problem (MFC).

To solve Problem (MFC), it is natural to use dynamic program-
ming and maximum principle. The dynamic programming, how-
ever, does not hold even if the BSDE and the observation equation
are not present, mainly due to the inclusion of the mean of the
state, which leads to the time inconsistency. We instead study the
maximum principle for optimality of Problem (MFC).

1.4. Briefly historical retrospect and contribution of this paper

Mean-field theory provides an effective tool for investigating
the collective behaviors arising from individuals’ mutual interac-
tions in various different fields, say, finance, game, engineering.
Since the independent introduction by Huang, Caines, and Mal-
hamé (2006, 2007) and Lasry and Lions (2007), the mean-field
theory has attracted more attention. See, e.g., Buckdahn, Djehiche,
and Li (2011), Djehiche et al. (2015), Elliott, Li, and Ni (2013),
Hu, Nualart, and Zhou (2014), Huang, Li, and Yong (2015), Meyer-
Brandis, Øksendal, and Zhou (2012), Ni, Elliott, and Li (2015), Shen,
Meng, and Shi (2014), Wang, Zhang, and Zhang (2014) and Yong
(2013) for mean-field control of SDE; Bensoussan, Sung, Yam, and
Yung (2016), Carmona, Delarue, and Lachapelle (2013), Carmona
et al. (2015) and Tembine, Zhu, and Basar (2014) for mean-field
game of SDE. Both mean-field control andmean-field game lead to
mean-field FBSDE. Buckdahn,Djehiche, Li, and Peng (2009) studied
the well-posedness of a decoupled mean-field FBSDE. Bensous-
san, Yam, and Zhang (2015) and Carmona and Delarue (2015)
extended Buckdahn et al. (2009) to the case of fully coupledmean-
field FBSDE. See also Ahmed and Ding (2001) and Bensoussan,
Frehse, and Yam (2013) for other developments of mean-field
theory.

Mean-field FBSDE is a well-defined dynamic system, it is very
appealing to study control problems for mean-field FBSDEs. To our
knowledge, there is only a few literature on this topic. For exam-
ple, Li and Liu (2014) investigated an optimal control problem for
fully coupledmean-field FBSDE. Hafayed, Tabet, and Boukaf (2015)
obtained a maximum principle for mean-field FBSDE with jump.
In this paper, we focus on studying a controlled mean-field FBSDE
with noisy observation, i.e., Problem (MFC). This problemhas three
new features as follows. (1) The drift coefficient of the observa-
tion equation is linear with respect to the state and its expecta-
tion, and the observation noise is correlated with the state noise.
(2) The classical separation principle does not work, mainly due to
the fact that the mean square error of filtering of BSDE depends
on the control in general. (3) The state equation involves the mean
of the state, and thus, Problem (MFC) cannot be transformed into
a standard control problem for FBSDE in a large state space. See,
e.g., Wang, Xiao, and Xing (2015) for an illustrative example. Note
that there is a circular dependence between v and Y v , which results
in the unavailability of classical variation. Due to the first feature
above, the usual approach such as Girsanov’s measure transforma-
tion Wang, Wu, and Xiong (2013) cannot be used to decouple the
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