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a b s t r a c t

Motivated by safety-critical applications in cyber–physical systems, in this paper we study the notion
of critical observability and design of observers for networks of Finite State Machines (FSMs). Critical
observability corresponds to the possibility of detecting if the current state of an FSM is in a given region
of interest, called set of critical states. A critical observer detects on-line the occurrence of critical states.
When a large-scale network of FSMs is considered, the construction of such an observer is prohibitive
because of the large computational effort needed. We propose a decentralized architecture for critical
observers of networks of FSMs, where on-line detection of critical states is performed by local critical
observers, each associated with an FSM of the network, which do not need to interact. For the efficient
design of decentralized critical observers we first extend on-the-fly algorithms traditionally used in the
community of formalmethods for the verification and control design of FSMs.We then extend to networks
of FSMs, bisimulation theory traditionally given in the community of formal methods for single FSMs. The
proposed techniques provide a remarkable computational complexity reduction, as discussed throughout
the paper and also demonstrated by means of illustrative examples.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Ensuring safety in large-scale and networked safety-critical ap-
plications, as for example Air Traffic Management (ATM) systems
(MAREA, 2011; Pezzuti, 2015), is a tough but challenging problem.
In particular, complexity is one of the most difficult issues that
must be overcome to make theoretical methodologies applicable
to real industrial applications. In this paperwe address the analysis
of critical observability and design of observers for networks of
Finite State Machines (FSMs). A network of FSMs is a collection
of FSMs interacting via parallel composition. Critical observability,
introduced in De Santis, Di Benedetto, Di Gennaro, D’Innocenzo,
and Pola (2005), corresponds to the possibility of detecting if the
current state of an FSM belongs to a set of critical states, modeling
operations that may be unsafe or, in general, operations of specific
interest in a particular application. Current approaches to check
critical observability are based on regular language theory as in Di
Benedetto, Di Gennaro, and D’Innocenzo (2008) or on the design
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of the so-called critical observers (Cassandras & Lafortune, 1999;
De Santis et al., 2005). The computational complexity of the first
approach is polynomial in the number of states of the FSM, while
the one of the second is exponential. Although disadvantageous
from the computational complexity point of view, the construction
of critical observers cannot be avoided at the implementation layer
since it is necessary for the automatic on-line detection of critical
situations. Motivated by this issue we present some results that
can reduce, in some cases drastically, the computational effort in
designing critical observers for large-scale networks of FSMs. We
first propose a decentralized architecture for critical observers of
the network, which is composed of a collection of local critical
observers, each associated with an FSM of the network, which do
not need to interact. Efficient algorithms for their synthesis are
proposed, and based on on-the-fly techniques traditionally used
for formal verification and control of FSMs (see e.g. Courcoubetis,
Vardi, Wolper, & Yannakakis, 1992; Tripakis & Altisen, 1999). We
then propose results on model reduction, which extend to net-
works of FSMs, bisimulation theory (Milner, 1989; Park, 1981)
traditionally given for single FSMs.Wedefine a bisimulation equiv-
alence that takes into account criticalities. We then reduce the
original network of FSMs to a smaller one, obtained as the quotient
of the original network induced by the bisimulation equivalence.
We first show that critical observability of the original network
is equivalent to critical observability of the quotient network. We
then show that a decentralized critical observer for the original
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network can be easily derived from the one designed for the quo-
tient network. To the best of our knowledge, the formal methods
techniques proposed in this paper have not yet been explored
neither for the analysis of critical observability nor for the analysis
of any other observability notion, with the only exception of Zad,
Kwong, and Wonham (2003). We defer to the last section a dis-
cussion on connections with the existing literature. A full version
of this paper can be found in Pola, Pezzuti, Santis, and Benedetto
(2017) which also includes an application to biological networks.

2. Networks of finite state machines and critical observability

2.1. Notation and preliminary definitions

The symbols ∧ and ∨ denote the And and Or logical operators,
respectively. The symbolN denotes the set of nonnegative integers.
Given n,m ∈ N with n < m let [n;m] = [n,m] ∩ N. The symbol
|X | denotes the cardinality of a finite set X . The symbol 2X denotes
the power set of a set X . Given a function f : X → Y we denote
by f (Z) the image of a set Z ⊆ X through f , i.e. f (Z) = {y ∈

Y |∃z ∈ Z s.t. y = f (z)}; if X ′
⊂ X and Y ′

⊂ Y then f |X ′→Y ′ is the
restriction of f to domainX ′ and co-domain Y ′, i.e. f |X ′→Y ′ (x) = f (x)
for any x ∈ X ′ with f (x) ∈ Y ′. We now recall from Cassandras &
Lafortune (1999) some basic notions of language theory. Given a
set Σ , a finite sequence w = σ1σ2σ3... with symbols σi ∈ Σ is
called a word in Σ; the empty word is denoted by ε. The Kleene
closure w∗ of a word w is the collection of words ε, w, ww, www,
... . The symbol Σ∗ denotes the set of all words in Σ , including
the empty word ε. The concatenation of two words u, v ∈ Σ∗

is denoted by uv ∈ Σ∗. Any subset of Σ∗ is called a language.
The projection of a language L ⊆ Σ∗ onto a subset Σ̂ of Σ is the
language PΣ̂ (L) = {t ∈ Σ̂∗

|∃w ∈ L s.t. PΣ̂ (w) = t} where PΣ̂ (w)
is inductively defined for any w ∈ L and σ ∈ Σ by PΣ̂ (ε) = ε and
PΣ̂ (wσ ) = PΣ̂ (w)σ if σ ∈ Σ̂ and PΣ̂ (wσ ) = PΣ̂ (w), otherwise.

2.2. Networks of finite state machines

In this paper we consider the class of nondeterministic FSMs
with observable labels:

Definition 2.1. A Finite State Machine (FSM) M is a tuple
(X, X0, Σ, δ) where X is the set of states, X0

⊆ X is the set of initial
states, Σ is the set of input labels and δ : X × Σ → 2X is the
transition map.

A state run r of an FSM M is a sequence x0
σ1

−→ x1
σ2

−→ x2
σ3

−→

x3 . . . such that x0 ∈ X0, xi ∈ X , σ i
∈ Σ and xi+1

∈ δ(xi, σ i+1) for
any xi and σ i in the sequence; the sequence σ 1 σ 2 σ 3 . . . is called
the trace associated with r . For X ′

⊆ X and σ ∈ Σ , we abuse
notation by writing δ(X ′, σ ) instead of

⋃
x∈X ′δ(x, σ ). The extended

transition map δ̂ associated with δ is inductively defined for any
w ∈ Σ∗, σ ∈ Σ and x ∈ X by δ̂(x, ε) = {x} and δ̂(x, wσ ) =⋃

y∈δ̂(x,w)δ(y, σ ). The language generated by M , denoted L(M), is
composed by all traces generated by M , or equivalently, L(M) =

{w ∈ Σ∗
|∃x0 ∈ X0 s.t. δ̂(x0, w) ̸= ∅}. An FSM M is deterministic

if |X0
| = 1 and |δ(x, σ )| ≤ 1, for any x ∈ X and σ ∈ Σ . In this

paper we are interested in studying whether it is possible to detect
if the current state of an FSMM is or is not in a set of critical states
C ⊂ X modeling operations that may be unsafe or, in general,
operations of specific interest in a particular application. We refer
to an FSM (X, X0, Σ, δ) equipped with a set of critical states C by
the tuple (X, X0, Σ, δ, C) and to an FSM with outputs by a tuple
(X, X0, Σ, δ, Y ,H), where Y is the set of output labels andH : X →

Y is the output function. For simplicity we call an FSM equipped
with critical states or with outputs as an FSM. The operator Ac(·)
extracts the accessible part from an FSM M = (X, X0, Σ, δ, C)

(resp. M = (X, X0, Σ, δ, Y ,H)), i.e. Ac(M) = (X ′, X0, Σ, δ′, C ′)
(resp. Ac(M) = (X ′, X0, Σ, δ′, Y ,H ′)) where X ′

= {x ∈ X |∃x0 ∈

X0
∧ w ∈ Σ∗ s.t. x ∈ δ̂(x0, w)}, δ′

= δ|X ′×Σ→X ′ , C ′
= C ∩ X ′ and

H ′
= H|X ′→Y . Interaction among FSMs is captured by the following.

Definition 2.2. The parallel composition M1 ∥ M2 =
(
X1,2, X0

1,2,

Σ1,2, δ1,2, C1,2
)
between two FSMs M1 = (X1, X0

1 , Σ1, δ1, C1) and
M2 = (X2, X0

2 , Σ2, δ2, C2) is the FSM Ac(X ′

1,2, X
′,0
1,2, Σ ′

1,2, δ
′

1,2,

C ′

1,2) where X ′

1,2 = X1 × X2, X
′,0
1,2 = X0

1 × X0
2 , Σ

′

1,2 = Σ1 ∪ Σ2,
C ′

1,2 = (C1 × X2) ∪ (X1 × C2) and δ′

1,2 : X ′

1,2 × Σ ′

1,2 → 2X ′
1,2 is

defined for any x1 ∈ X ′

1, x2 ∈ X ′

2 and σ ∈ Σ ′

1,2 by⎧⎪⎪⎪⎨⎪⎪⎪⎩
δ1(x1, σ ) × δ2(x2, σ ), if δ1(x1, σ ) ̸= ∅ ∧ δ2(x2, σ ) ̸= ∅

∧ σ ∈ Σ1 ∩ Σ2,

δ1(x1, σ ) × {x2}, if δ1(x1, σ ) ̸= ∅ ∧ σ ∈ Σ1 \ Σ2,

{x1} × δ2(x2, σ ), if δ2(x2, σ ) ̸= ∅ ∧ σ ∈ Σ2 \ Σ1,

∅, otherwise.

By definition, a state (x1, x2) ∈ C1,2, i.e. (x1, x2) is considered as
critical for M1 ∥ M2, if and only if x1 ∈ C1 or x2 ∈ C2. Vice versa,
(x1, x2) /∈ C1,2 if and only if x1 /∈ C1 and x2 /∈ C2. It is well known
that

Proposition 2.3 (Cassandras& Lafortune, 1999). The parallel compo-
sition operation is commutative up to isomorphisms and associative.

By the result above, we may write in the sequel M1∥M2∥M3,
X1,2,3 and C1,2,3 instead of M1∥(M2∥M3), X1,(2,3) and C1,(2,3) or, in-
stead of (M1∥M2)∥M3, X(1,2),3 and C(1,2),3. In this paper we consider
a network

N = {M1,M2, . . . ,MN}

ofN FSMsMi whose interaction is captured by the notion of parallel
composition; the corresponding FSM is given by M(N ) = M1 ∥

M2∥ · · · ∥MN . The FSM M(N ) is well defined because the compo-
sition operator ∥ is associative. For the computational complexity
analysis,wewill use in the sequel the numbernmax = maxi∈[1;N]|Xi|

as indicator of the sizes of the FSMs composing the network N .
An upper bound to space and time computational complexity in
constructingM(N ) is O(2N log(nmax)).

2.3. Critical observability and observers

Critical observability corresponds to the possibility of detecting
whether the current state x of a run of an FSM is or is not critical
on the basis of the information given by the corresponding trace at
state x:

Definition 2.4. An FSM M = (X, X0, Σ, δ, C) is critically observ-
able if [δ̂(x0, w) ⊆ C] ∨ [δ̂(x0, w) ⊆ X \ C], for any initial state
x0 ∈ X0 and any trace w ∈ L(M).

Any FSM M having an initial state that is critical and another
initial state that is not critical, is never critically observable. More-
over, if X0

= C then FSM M is critically observable and no further
analysis for the detection of critical states is needed. For these
reasons in the sequel we assume that [ X0

⊂ C ] ∨ [ X0
⊆ X \ C ]

for any FSMM . An illustrative example follows.

Example 2.5. Consider FSMs Mi = (Xi, X0
i , Σi, δi, Ci), i = 1, 2,

depicted in Fig. 1, where X1 = {1, 2, 3, 4} , X0
1 = {1}, Σ1 =

{a, b, c, d}, C1 = {4}, X2 = {5, 6, 7, 8}, X0
2 = {5}, Σ2 = {a, b, e},

C2 = {7, 8} and transition maps δ1 and δ2 are represented by
labeled arrows in Fig. 1; labels on the arrows represent the input
label associated with the corresponding transition. FSM M1 is not
critically observable because it is possible to reach both noncritical
state 3 and critical state 4 starting from the initial state 1, by
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