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a b s t r a c t

The conditions for existence of solutions and stability, asymptotic and exponential, of a large class of
boundary controlled systems on a 1D spatial domain subject to nonlinear dynamic boundary actuation are
given. The consideration of such class of control systems is motivated by the use of actuators and sensors
with nonlinear behavior in many engineering applications. These nonlinearities are usually associated
to large deformations or the use of smart materials such as piezo actuators and memory shape alloys.
Including them in the controller model results in passive dynamic controllers with nonlinear potential
energy function and/or nonlinear damping forces. First it is shown that under very natural assumptions
the solutions of the partial differential equation with the nonlinear dynamic boundary conditions exist
globally. Secondly, when energy dissipation is present in the controller, then it globally asymptotically
stabilizes the partial differential equation. Finally, it is shown that assuming some additional conditions
on the interconnection and on the passivity properties of the controller (consistent with physical
applications) global exponential stability of the closed-loop system is achieved.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In many physical processes the effects produced by distributed
phenomena cannot be neglected. This is for instance the case for
transmission lines, flexible beams and plates, tubular and nuclear
fusion reactors andwave propagation to cite a few. These processes
are hence modeled using partial differential equations (PDE) in
which state variables and parameters are time and spatial de-
pendent. In many relevant applications the measurement and the
actuation occur on the spatial boundary of the system, hence what
the controller actually imposes through the physical actuators are
time varying boundary conditions. Formally this class of control
systems are called boundary control systems (BCS).

In engineering applications BCS are often controlled using lo-
calized actuators which exhibit nonlinear behavior. These nonlin-
earities are for example related to large deformations of compliant
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structures (nonlinear springs) in mechanical systems or hysteresis
behavior of ferro and piezo electrical materials in electro me-
chanical systems. This is for instance the case of silicon made
nanotweezers built up from beams which are controlled using
electrostatic comb drives and attached through nonlinear silicon
made suspensions (thin beams) (Boudaoud, Haddab, & Le Gorrec,
2012), nonlinear fluid structure interaction, such as in distributed
control of vibro-acoustic systems through nonlinear loudspeak-
ers (Collet, David, & Berthillier, 2009) or the stability characteriza-
tion of biomechanical processes such as the blood flowdynamics in
bio-prosthetic heart valves (Borazjani, 2013) or the vocal cords dy-
namics (Ishizaka & Flanagan, 1972). The nonlinear components are
generally associated to nonlinear constitutive laws of the driving
forces, usually present in a potential energy term and to nonlinear
damping phenomena related to nonlinear resistors and dampers,
respectively.

In the linear case the existence of solutions, the stability and
the design of stabilizing controllers can be tackled using linear
semigroup theory and the associated abstract formulation based
on unbounded input/output mappings (Curtain & Zwart, 1995).
When asymptotic or exponential stability is concerned, the main
difficulty remains in finding the appropriate Lyapunov function
candidate to prove the stability. It is usually done on a case by
case basis using physical considerations depending on the appli-
cation field. When characterizing exponential stability, contrary
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to asymptotic stability, the conditions insuring the exponential
convergence are quite rigid as the controller has to damp infinitely
high frequency as well as all low frequency modes.

In the last decade an approach based on the extension of
the Hamiltonian formulation to open distributed parameter sys-
tems (van der Schaft & Maschke, 2002) has been developed for
modeling and control. It has been shown that distributed port-
Hamiltonian systems encompass a large class of physical systems,
includingmechanical, electrical, electro-mechanical, hydraulic and
chemical systems to mention some. See Duindam, Macchelli,
Stramigioli, and Bruyninckx (2009) for an extensive exposition and
a large list of references. Regarding the extension of the Hamilto-
nian formulation to stabilizing control of BCS, in the 1D linear case
it gave rise to the definition of boundary control port-Hamiltonian
systems (BC-PHS) (Le Gorrec, Zwart, & Maschke, 2004) and al-
lowed to parametrize, by using simple matrix conditions, the
boundary conditions that define a well-posed problem (Le Gorrec,
Zwart, & Maschke, 2005). Different variations around these first
results can be found in Villegas (2007) and in Jacob and Zwart
(2012). Well-posedness and stability have been investigated in
open-loop and for static boundary feedback control in Zwart, Le
Gorrec, Maschke, and Villegas (2010), Villegas, Zwart, Le Gorrec,
and Maschke (2009) and Villegas, Zwart, Le Gorrec, Maschke, and
van der Schaft (2005) respectively, and linear dynamic boundary
control has been studied in Augner and Jacob (2014), Macchelli, Le
Gorrec, Ramirez, and Zwart (2017), Ramirez, Le Gorrec, Macchelli,
and Zwart (2014) and Villegas (2007).

In this paper the results on existence of solution and stabiliza-
tion of linear dynamic boundary control of BC-PHS are generalized
to the case of nonlinear boundary control. This class of systems
is of real practical interest since the controllers are often imple-
mented with actuators and sensors with nonlinear behavior, due
for instance to large deformations, the use of smart materials or
saturation phenomena. The same kind of problemhas already been
studied in Miletić, Stürzer, Arnold, and Kugi (2016) and in Augner
(2016) from a theoretical point of view. In Miletić et al. (2016)
LaSalle’s invariance principle is used and precompactness of trajec-
tories is established but asymptotic stability was only shown for a
dense set of initial conditions. In Augner (2016) nonlinear contrac-
tion semigroups are used leading to quite strong assumptions on
the class of considered nonlinearities. This approach differs from
themethods that we use in this paper, which are based on nontriv-
ial extensions of the asymptotic and exponential stability results
presented in Zwart, Ramirez, and Le Gorrec (2016) and Ramirez
et al. (2014), respectively, allowing to deal with very large class of
nonlinearities. More precisely, a general class of passive boundary
controllers, with nonlinear potential energy function and damping
matrix is considered. This class of controllers encompasses me-
chanical, electrical and electro-mechanical systems among others.
First it is shown that under natural assumptions on the nonlinear
potential function and damping matrix the solutions of the PDE
with this class of nonlinear dynamic boundary conditions exist
globally. Then, it is shown that the most general form of this class
of passive controllers globally asymptotically stabilizes the closed
loop system (PDE + nonlinear ODE). Finally, it is shown that by
restricting the nonlinear potential energy to functions with quasi
quadratic bound and a full rank condition on the feedthrough
term of the controller global exponential stability is achieved. The
first part of this work, dealing with asymptotic stability, has been
illustrated on the particular example of pure nonlinear damper
in Zwart et al. (2016).

The paper is organized as follows. In Section 2 the definition
and main properties of the considered class of PDE and nonlinear
dynamic boundary controller are given. The existence and the
uniqueness of the solutions of the PDE are established in Section 3.
The asymptotic stability is studied in Section 4 while the expo-
nential stability is addressed in Section 5. Finally some concluding
remarks and comments to future work are given in Section 6.

2. Port-Hamiltonian systems with nonlinear boundary control

Throughout this article we assume that our distributed param-
eter system is modeled by a PDE of the following form
∂x
∂t

(t, ζ ) = P1
∂

∂ζ
(H(ζ )x(t, ζ )) + (P0 − G0)H(ζ )x(t, ζ ), (1)

with ζ ∈ (a, b), P1 ∈ Mn(R)1 a nonsingular symmetric matrix,
P0 = −P⊤

0 ∈ Mn(R), G0 ∈ Mn(R) with G0 ≥ 0 and x taking
values in Rn. Furthermore, H(·) ∈ L∞((a, b);Mn(R)) is a bounded
and measurable, matrix-valued function satisfying for almost all
ζ ∈ (a, b), H(ζ ) = H(ζ )⊤ and H(ζ ) > mI , with m independent
from ζ .

For simplicity H(ζ )x(t, ζ ) will be denoted by (Hx)(t, ζ ). For
the above PDE we assume that some boundary conditions are
homogeneous, whereas others are controlled. Thus we consider
two matrices WB,1 and WB,2 of appropriate sizes such that

u(t) = WB,1

[
(Hx)(t, b)
(Hx)(t, a)

]
(2)

and

0 = WB,2

[
(Hx)(t, b)
(Hx)(t, a)

]
. (3)

Furthermore, the boundary output is given by

y(t) = WC

[
(Hx)(t, b)
(Hx)(t, a)

]
. (4)

To study the existence and uniqueness of solution to the above
controlled PDE,we follow the semigroup theory, see also Le Gorrec
et al. (2005) and Jacob and Zwart (2012). Therefore we define the
state space X = L2((a, b);Rn) with inner product ⟨x1, x2⟩H =

⟨x1,Hx2⟩ and norm ∥x∥H =
√

⟨x, x⟩H. Note that due to the
assumptions on H this is a norm on X and equivalent to the L2
norm. Hence X is a Hilbert space. The reason for selecting this space
is that ∥ · ∥

2
H is related to the energy function of the system, i.e., the

total energy of the system equals E =
1
2 ∥x∥2

H. The Sobolev space
of order p is denoted by Hp((a, b),Rn).

Associated to the (homogeneous) PDE, i.e., to the case u(t) = 0,
we define the operator Ax = P1 d

dζ (Hx)+ (P0 −G0)Hxwith domain

D(A) =

{
Hx ∈ H1((a, b);Rn)

⏐⏐⏐ [(Hx)(b)
(Hx)(a)

]
∈ kerWB

}
,

where WB =

[
WB,1
WB,2

]
. For the rest of the paper we make the

following hypothesis.

Assumption1. For the operatorA and the pde (1)–(4) the following
hold:

1. The matrixWB is an n × 2nmatrix of full rank;
2. For x0 ∈ D(A) we have ⟨Ax0, x0⟩H ≤ 0.
3. The number of inputs and outputs are the same, k, and for

classical solutions of (1)–(4) there holds Ė(t) ≤ u(t)⊤y(t)
with E(t) =

1
2 ∥x(t)∥2

H.

It follows from Assumption 1, points 1 and 2, that the system
(1)–(4) is a boundary control system (see Le Gorrec et al., 2005;
Jacob & Zwart, 2012; Jacob, Morris, & Zwart, 2015), and so for
u ∈ C2([0, ∞);Rk), Hx(0) ∈ H1((a, b);Rn), satisfying (2) and (3)
(for t = 0), there exists a unique classical solution to (1)–(4), Jacob
and Zwart, (2012, Theorem 11.2). Thus for this dense (in X) set of
initial conditions and inputs, point 3 of Assumption 1makes sense.
We remark that the internal damping operator G0 will hardly play

1 Mn(R) denote the space of real n × nmatrices.
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