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We propose new algorithms to solve this problem based on a reformulation using linear dissipative
Hamiltonian systems: we show that a matrix A is stable if and only if it can be writtenas A = (J — R)Q,
where ] = —JT,R > 0and Q > O (that is, R is positive semidefinite and Q is positive definite).
This reformulation results in an equivalent optimization problem with a simple convex feasible set. We
propose three strategies to solve the problem in variables (J, R, Q): (i) a block coordinate descent method,
(ii) a projected gradient descent method, and (iii) a fast gradient method inspired from smooth convex
optimization. These methods require ©(n®) operations per iteration, where n is the size of A. We show the
effectiveness of the fast gradient method compared to the other approaches and to several state-of-the-art
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1. Introduction

In this paper, we focus on the continuous linear time invariant
systems of the form

x(t) = Ax(t) + Bu(t),

where A € R™", B € R™™, x is the state vector and u is the input
vector. Such a system is stable if all eigenvalues of A are in the closed
left half of the complex plane and all eigenvalues on the imaginary
axis are semisimple. Therefore the stability solely depends on A,
and the matrix B that weights the inputs can be ignored to study
stability.

For a given unstable matrix A, the problem of finding the small-
est perturbation that stabilizes A, or, equivalently finding the near-
est stable matrix X to A is an important problem (Orbandexivry,
Nesterov, & Van Dooren, 2013). More precisely, we consider the
following problem. For a given unstable matrix A, compute

inf ||A—X|2, 1
nf 1A — X; )
where || - ||r denotes the Frobenius norm of a matrix and S™" is

the set of all stable matrices of size n x n. This problem occurs
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for example in system identification where one needs to identify
a stable system from observations (Orbandexivry et al., 2013).

The converse of problem (1) is the stability radius problem,
where a stable matrix A is given and one looks for the smallest
perturbation that moves an eigenvalue outside the stability re-
gion (Byers, 1988; Hinrichsen & Pritchard, 1986). Both problems
are nontrivial because even a small perturbation on the coefficients
of the matrix may move the eigenvalues in any direction and the
perturbed matrix may well have eigenvalues that are far from
those of A (Orbandexivry et al., 2013). However, the nearest stable
matrix problem appears to be more difficult since it requires to
push all eigenvalues from the unstability region into the stability
region while the stability radius problem only requires to move a
single eigenvalue on the boundary of the stability region.

The various distance problems for matrices have been a topic of
research in the numerical linear algebra community, for example,
matrix nearness problems (Higham, 1988b), the structured sin-
gular value problem (Packard & Doyle, 1993), the robust stability
problem (Zhou, 2011), the distance to bounded realness for Hamil-
tonian matrices (Alam, Bora, Karow, Mehrmann, & Moro, 2011),
and the nearest defective matrix (Wilkinson, 1984).

Another related problem is to find the closest stable polynomial
to a given unstable one. This was addressed by Moses and Liu
(1991), where an algorithm using the alternating projection ap-
proach in Schur parameter space was developed. But the technique
developed in Moses and Liu (1991) is limited and cannot be applied
to other types of systems. In Burke, Henrion, Lewis, and Overton
(2006b), authors stabilize fixed order controllers using nonsmooth,
nonconvex optimization. A MATLAB toolbox called HIFOO (H.,
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fixed order optimization) was designed to solve fixed order stabi-
lization and local optimization problems (Burke, Henrion, Lewis,
& Overton, 2006a). In D’haene, Pintelon, and Vandersteen (2006),
authors stabilize transfer functions using a two step iterative pro-
cedure that guaranteed stable transfer function models from noisy
data.

We note that in the literature, a stable matrix is sometimes
considered to satisfy Re(A) < O for all its eigenvalues A; see,
e.g., Byers (1988), Hinrichsen and Pritchard (1986) and Orbandex-
ivry et al. (2013). To avoid the confusion, we call such matrices
asymptotically stable. The set of all asymptotically stable matrices
is open. This follows from the fact that the eigenvalues of a matrix
depend continuously on its entries (Ostrowski, 1960). However,
the set S™" is neither open nor closed, because A, ¢ S™" for e > 0,
but A € S™", where

0 1 o ... 0
-1 € o ... 0
0 o -1 ... 0
0 0 o ... -1
=Ac¢
0 1 0 0
-1 0 0 0
0 0 -1 0
ﬁ 9
0 0 0 -1
=A
and B; € S™" for § < 0, but B ¢ S™", where
0 1 o ... 0
0 ) o ... o0
0 o -1 ... 0
0 0 o ... -1
=:Bs
0 1 0 0
0 0 0 0
0 0 -1 0
ﬁ
0 0 0 -1

=B
Further, the set S™" of stable matrices in (1) is highly noncon-
vex (Orbandexivry et al., 2013) and therefore it is in general
difficult to compute a global optimal solution to problem (1).

Our work is mainly motivated by the work in Orbandexivry
et al. (2013), where a nearby stable approximation X of a given
unstable system A is constructed by means of successive convex
approximations of the set of stable systems. Our principle strategy
for computing a nearby stable approximation to a given unsta-
ble matrix is to reformulate the highly nonconvex optimization
problem (1)into an equivalent (non-convex) optimization problem
with a convex feasible region onto which points can be projected
relatively easily. We aim to provide in many cases better approxi-
mations than the one obtained with the code from Orbandexivry
et al. (2013) by using the concept of linear dissipative Hamiltonian
systems.

Notation: In the following, we denote A > Oand A > 0if A
is symmetric positive definite or symmetric positive semidefinite,
respectively. The set A(A) denotes the set of all eigenvalues of A.

1.1. Dissipative Hamiltonian systems

A dissipative Hamiltonian (DH) system in the linear time invari-
ant case can be expressed as

x=( - R,
where the function x — x"Qx with Q = QT € R™" positive
definite describes the energy of the system, ] = —JT e RM"

is the structure matrix that describes flux among energy storage
elements, and R € R™" with R = RT > 0 is the dissipation matrix
that describes energy dissipation in the system. DH systems are
special cases of port-Hamiltonian systems, which recently have
received a lot attention in energy based modeling; see, e.g., Golo,
van der Schaft, Breedveld, and Maschke (2003), van der Schaft
(2006) and van der Schaft and Maschke (2013). An important
property of DH systems is that they are stable, i.e., all eigenvalues
of matrix A = (J — R)Q are in the closed left half of the complex
plane and all eigenvalues on the imaginary axis are semisimple.
This follows from the fact that Q is symmetric positive definite.
Indeed, for any nonzero vector z one has

Re (z°(Q#4Q})z) = Re (z*(@ ¥} — @R} )z)
— —2"QIRQ?z <0,

since R is positive semidefinite, where % stands for the complex
conjugate transpose of a matrix or a vector. The semisimplicity of
the purely imaginary eigenvalues of (] — R)Q follows from Mehl,
Mehrmann, and Sharma (2016, Lemma 3.1). The various structured
distances of a DH system from the region of asymptotic stability
have recently been studied in Mehl et al. (2016) for the complex
case and in Mehl, Mehrmann, and Sharma (2017) for the real case.

This paper is organized as follows. In Section 2, we reformulate
the nearest stable matrix problem using the notion of DH matrices.
We also provide several theoretical results necessary to obtain our
reformulation. In Section 3, three algorithms are proposed to solve
the reformulation. In Section 4, we present numerical experiments
that illustrate the performance of our algorithms and compare the
results with several state-of-the-art algorithms.

2. DH framework for checking stability

In this section, we present a new framework based on dissi-
pative Hamiltonian systems to attack the nearest stable matrix
problem (1). Our main idea is to reformulate the nonconvex op-
timization problem (1) into an equivalent optimization problem
with a relatively simple convex feasible set. In order to do this, let
us define a DH matrix.

Definition 1. A matrix A € R™" is said to be a DH matrix if
A = (J —R)Q forsome J,R,Q € R suchthat]T = —],R = 0
and Q > 0.

Clearly from the previous section every DH matrix is stable.
In our terminology, (Beattie, Mehrmann, & Xu, 2015 Corollary
2) implies that every stable matrix A is similar to a DH matrix,
i.e., there exists T nonsingular such that T~'AT = (J —R)Q for some
JT = —J,R > 0and Q > 0. In fact we prove something stronger:
a stable matrix itself is a DH matrix, as shown in the following
lemma.

Lemma 2. Every stable matrix is a DH matrix.

Proof. Let A be stable. By Lyapunov’s theorem
Tismenetsky, 1985), there exists P > 0 such that

(Lancaster &

AP + PAT < 0. (2)
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