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a b s t r a c t

This paper investigates the reduced attitude formation control problem for a group of rigid-body agents
using feedback based on relative attitude information. Under both undirected and directed cycle graph
topologies, it is shown that reversing the sign of a classic consensus protocol yields asymptotical
convergence to formations whose shape depends on the parity of the group size. Specifically, in the case
of even parity the reduced attitudes converge asymptotically to a pair of antipodal points and distribute
equidistantly on a great circle in the case of odd parity. Moreover, when the inter-agent graph is an
undirected ring, the desired formation is shown to be achieved from almost all initial states.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Multi-agent coordination (Beard, Lawton, &Hadaegh, 2001; Fax
& Murray, 2004; Jadbabaie, Lin, & Morse, 2003; Olfati-Saber, Fax,
& Murray, 2007) has gained increasing recognition and apprecia-
tion during the last decade. Following many significant results on
consensus, how to effectively generate various multi-agent forma-
tions, patterns or subgroup divisions has attractedmuch attention.
Among the problems studied, attitude formation of multiple rigid-
body agents is of key importance with wide potential applications
such as formation flying (Beard et al., 2001; Scharf, Hadaegh, &
Ploen, 2004) and multi-camera surveillance (Tron & Vidal, 2014;
Wang, 2013). Attitude synchronization or consensus, a special and
simple formation pattern of attitudes, has been widely studied
(Sarlette, Sepulchre, & Leonard, 2009; Thunberg, Song, Montijano,
Hong, & Hu, 2014; Tron, Afsari, & Vidal, 2012, 2013).

The (full) attitude of a rigid-body agent can be represented by
a rotation matrix that evolves on the Lie group SO(3). However,
many attitude control applications do not require all three degrees
of freedom of the full attitude to be determined. In rigid-body
pointing applications, for example a body-fixed camera, the solar
panel of a satellite or an antenna need to point towards some
desired direction, the rotation about the pointing axis is irrelevant
since this rotation does not change the direction in which the
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agent points. Moreover, in under-actuated situations where the
rigid-body is actuated by only two independent control torques,
for example due to the failure of a third actuator, the rotation
about the unactuated axis is disregarded. The reduced attitude
provides the proper framework to dealwith such a situation (Bullo,
Murray, & Sarti, 1995). All these applications lead to a reduced
attitude control problem (Bullo et al., 1995; Chaturvedi, Sanyal,
& McClamroch, 2011; Lee, Leok, & McClamroch, 2011; Mayhew
& Teel, 2010), in which the reduced attitude of two degrees of
freedom is naturally identified with a point on the 2-sphere S2.

Consider the attitude formation problem for a system of n
rigid-body agents on the product manifold SO(3)n or (S2)n un-
der a continuous feedback control law based on relative attitude
information. It can be shown that consensus states are intrinsic
equilibria of the closed-loop system regardless of the topology of
the inter-agent graph. The work Tron et al. (2012) and Pereira
and Dimarogonas (2017) achieve this attitude synchronization for
full attitudes and reduced attitudes respectively. However, due
to the fact that SO(3)n and (S2)n are compact manifolds without
boundary (Bhat & Bernstein, 2000), continuous time-invariant
feedback control also yields some other closed-loop equilibria that
vary with the graph topology. These equilibria represent different
attitude configurations of the system, whichmay include a desired
formation depending on the application. A natural and interesting
question thus arises: is it possible to achieve a desired formation
by imposing some suitable inter-agent graph to the system and de-
signing a feedback control with only relative attitude information
that stabilizes the formation?

It is increasingly recognized that one of the important ideas
in multi-agent systems is to design simple distributed control
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algorithms with not only cooperative but also antagonistic inter-
actions between neighboring agents. Modulus consensus requires
the moduli of all agent states to reach a common value but the
agents may be separated into several antagonistic subgroups. The
simplest case concerning two antagonistic subgroups, bipartite
consensus, models the inter-agent connection as a signed graph
(Altafini, 2013; Proskurnikov, Matveev, & Ming, 2014; Valcher &
Misra, 2014). For a general modulus consensus case or even the
extended set surrounding case, signed graphs are replaced by the
graphs with complex weights expressed with complex adjacency
matrices (Lou & Hong, 2015). These results demonstrate that
antagonistic interactions are effective to generate new coordina-
tion or formation patterns, but the considered dynamics basically
evolve in Euclidean spaces. Additionally, cooperative control of
motion on the circle and sphere with both attractive and repulsive
couplings are studied in Olfati-Saber (2006) and Li and Spong
(2014), respectively, but the inter-agent graph is required to be
undirected and complete.

By extending the coordination studies with antagonistic inter-
actions discussed in Euclidean spaces to those on compact man-
ifolds, this paper provides a partial but affirmative answer to the
aforementioned question via investigating reduced attitude for-
mation with both undirected and directed ring inter-agent graph.
In particular, we focus on the generation of attitude formation
patterns using only relative attitude information of a groupof rigid-
body agents. Compared to the full attitude formation problem, the
reduced attitude formation ismore intuitive and easier to visualize.

In this paper, a simple angular velocity control for reduced atti-
tude formation is proposed on the basis of antagonistic interactions
between neighboring agents. Due to the geometry of the 2-sphere
some interesting phenomena are observed: the closed-loop system
behaves differently under the proposed distributed control when
the parity of the total number of agents is different. Specifically,
the antipodal formation is achieved when the number is even, and
the cyclic formation is achieved when the number is odd. It is
shown that these two reduced attitude formations are intrinsic in
the sense that they result from the geometry of the 2-sphere and
the topology of the inter-agent graph. It is worthwhile to mention
that, in addition to the simple control structure, another strength
of the proposed method is that we do not need to have the desired
formation given beforehand or the formation errors in the control,
in contrast to most existing methods (Beard et al., 2001; Song,
Hong, & Hu, 2013; Wu, Flewelling, Leve, & Lee, 2013).

Comparing the control protocol and the resulting formation
in this paper with that of Altafini (2013) and Valcher and Misra
(2014) in Euclidean space, there are mainly two differences:
(i) for neighboring agents with antagonistic interaction, only rel-
ative states of neighboring agents is utilized in reduced attitude
control, while absolute position of neighboring agents is required
in the control of Altafini (2013) and Valcher and Misra (2014);
(ii) in the case of ring inter-agent graph, if the total number of
agents is odd and all neighboring agents are antagonistic, cyclic
reduced formation can be attained due to the geometry of the
2-sphere, while the positions of all agents in Altafini (2013) and
Valcher and Misra (2014) reach consensus at the origin because
the graph is unbalanced.

The rest of the paper is organized as follows: in Section 2, nec-
essary preliminaries on the reduced attitude and the 2-sphere are
introduced. In Section 3, the reduced attitude formation problem
with the ring inter-agent graph is formulated and a distributed
angular velocity control law is proposed. The antipodal formation
and cyclic formation of reduced attitudes are discussed in Sec-
tions 4 and 5, respectively. Following that, illustrative examples are
provided in Section 6, and the conclusions are given in Section 7.

2. Notations and preliminaries

This paper considers the reduced attitude control problem for
a network of n (n ≥ 2) rigid-body agents. In this section, we give
some preliminaries on the reduced attitude and the 2-sphere.

Let the index set V = {1, 2, . . . , n} represent the agents in the
network. Denote Ri ∈ SO(3) as the attitude of agent i ∈ V relative
to the inertial frame F , where SO(3) = {R ∈ R3×3

: RTR =

I, det(R) = 1} is the rotation group of R3. The kinematics of Ri is
governed by Murray, Li, and Sastry (1994)

Ṙi = ω̂iRi, (1)

where ωi ∈ R3 is the angular velocity of agent i in the inertial
frame F , and the hat operator (·)∧ is defined by the equality that
x̂y = x × y for any x, y ∈ R3.

Suppose that bi ∈ S2 is a constant pointing direction in the
body-fixed frame of agent i, where S2

= {x ∈ R3
: ∥x∥ = 1} is

the 2-sphere and ∥ · ∥ is the Euclidean norm. Let Γi ∈ S2 denote
the same pointing direction resolved in the inertial frame F , then,
Γi = Ribi. Γi is referred to as the reduced attitude of agent i since
the rotation of agent i about bi is ignored. In the paper, we use a
parametrization of Γi given as follows

Γi =

[cos(ψi) cos(ϕi)
sin(ψi) cos(ϕi)

sin(ϕi)

]
(2)

where ϕi ∈ [−π/2, π/2] and ψi ∈ [−π, π ). In fact, when bi =

[1, 0, 0]T , the two angles −ϕi and ψi are the respective pitch and
yaw angles of the rotation Ri. By the kinematics (1) of the full
attitude, the kinematics of Γi is governed by Lee et al. (2011)

Γ̇i = ω̂iΓi. (3)

The tangent space of S2 at a point Γ ∈ S2 is given by TΓ S2
=

{x ∈ R3
: xTΓ = 0}. Rotating Γ ∈ S2 about a unit axis u ∈

TΓ S2 through an arbitrary angle β transforms it to another point
exp(βû)Γ ∈ S2, where exp(·) is the matrix exponential. For any
two reduced attitudesΓi,Γj ∈ S2, define θij ∈ [0, π] and kij ∈ S2 as

θij = arccos(Γ T
i Γj), kij = Γ̂iΓj/sin(θij).

It holds that Γj = exp(θiĵkij)Γi. Notice that the above equation for
the unit axis kij is valid only when θij ∈ (0, π ). When θij = 0 or π ,
we stipulate that kij is chosen as any unit vector orthogonal to Γi.

The geodesic distance between any two points Γi,Γj ∈ S2,
denoted as dS2 (Γi,Γj), is the length of the shorter arc on the great
circle of S2 joining the two points. Therefore,

dS2 (Γi,Γj) = θij.

The following lemma gives the relationship among geodesic dis-
tances of any three points on the 2-sphere, which can be verified
using spherical cosine formula. More details about the geometry of
the 2-sphere can be found in Ferreira, Iusem, and Németh (2014)
and Todhunter (1859).

Lemma 2.1. For any three points Γi,Γj,Γk ∈ S2,

cos(θij) = cos(θik) cos(θjk) + sin(θik) sin(θjk)kTikkjk,
θij + θik + θjk ≤ 2π.

Furthermore, Γi,Γj,Γk lie on a great circle of S2 if and only if θij =

|θik − θjk|, θij = θik + θjk or θij + θik + θjk = 2π .

Denote the state space of the system (3) as the productmanifold
(S2)n, which is then-fold Cartesian product ofS2 with itself.Weuse
Γ = {Γi}i∈V ∈ (S2)n to denote the state of the system, and use the
metric in (S2)n as

d(S2)n (Γ, Γ̄) = max
i∈V

dS2 (Γi, Γ̄i), ∀Γ, Γ̄ ∈ (S2)n.
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