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a b s t r a c t

Hammerstein systems are the series composition of a static nonlinear function and a linear dynamic
system. In this work, we propose a nonparametric method for the identification of Hammerstein systems.
We adopt a kernel-based approach to model the two components of the system. In particular, we model
the nonlinear function and the impulse response of the linear block as Gaussian processes with suitable
kernels. The kernels can be chosen to encode prior information about the nonlinear function and the
system. Following the empirical Bayes approach, we estimate the posterior mean of the impulse response
using estimates of the nonlinear function, of the hyperparameters, and of the noise variance. These
estimates are found by maximizing the marginal likelihood of the data. This maximization problem is
solved using an iterative scheme based on the expectation-conditional maximization, which is a variation
of the standard expectation–maximization method for solving maximum-likelihood problems. We show
the effectiveness of the proposed identification scheme in some simulation experiments.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Nonlinear system identification is challenging because it is dif-
ficult to choose a general model structure to represent data from
a nonlinear system (Sjöberg, Zhang, Ljung, Benveniste, Delyon,
Glorennec, Hjalmarsson, & Juditsky, 1995). One way to reduce the
number of candidate models is to use block-oriented models; in
this way, we can usemodel structures that are applicable to a wide
array of problems and for which effective estimation techniques
exist (Giri & Bai, 2010). Among the block-oriented models is
the Hammerstein structure (HS). It is a nonlinear cascaded model
where a linear time-invariant (LTI) dynamical model follows a
static nonlinear mapping (see Ljung, 1999).

The HS is capable of modeling a wide range of processes and
has therefore been object of numerous studies (Bai, Cai, Dudley-
Javorosk, & Shields, 2009; Hunter & Korenberg, 1986; Westwick
& Kearney, 2001). Over the years, several identification meth-
ods have been proposed. In the following, we characterize the
main approaches. In overparameterization methods, the problem of
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identifying the unknown parameters is embedded in the larger
problem of identifying a vector containing all the cross products
of the parameters (Bai, 1998). This turns the problem into a linear
identification problem, to which linear techniques can be applied
(for instance, least squares in Bai, 1998, instrumental variables
in Han and De Callafon, 2011). Once the overparameterized vector
has been identified, the solution of the original problem is recov-
ered by means of some reduction step (for instance, minimum
norm in Bai, 1998 and Han and De Callafon, 2011, consistent esti-
mation in Boutayeb, Aubry, and Darouach, 1996). These methods
hinge around a rank-one constraint, which is difficult to enforce.
Attempts have been made using regularization techniques (see,
for instance, Falck, Suykens, Schoukens, and De Moor, 2010 and
Risuleo, Bottegal, and Hjalmarsson, 2015b). Subspace methods have
been extended to HSs. The MOESP subspace method has been ex-
tended to HSs by assuming a polynomial model for the static non-
linearity (Verhaegen & Westwick, 1996). N4SID has been adapted
to HSs by using support-vector machines (Goethals, Pelckmans,
Suykens, & De Moor, 2005). In Separable Least Squares methods,
the unknowns are divided into two sets and the variables in one
set are expressed as functions of the variables in the other set. This
reduces the dimensionality of the problem (Golub&Pereyra, 2003;
Han & De Callafon, 2012; Westwick & Kearney, 2001). Similarly,
in iterative methods, the variables are split into two sets, and the
problem is solved by alternating the optimization between the
two sets of variables (see, for instance, Bai & Li, 2004; Liu & Bai,
2007). In stochastic methods the linearity is identified irrespective
of the nonlinear transformation using correlation analysis (Billings
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& Fakhouri, 1978; Greblicki, 2000; Rangan, Wolodkin, & Poolla,
1995). These methods typically rely on certain properties of the
input signal, for instance on its whiteness. Similarly, in blind meth-
ods, techniques from blind system identification are adapted to
the identification of the linear component of the cascade (Bai &
Fu, 2002; Vanbeylen, Pintelon, & Schoukens, 2009). The frequency-
domain methods rely on the frequency content of the input and
output signals. The output spectrum is a known function of the in-
put frequency andmagnitude, with some unknownparameters. By
applying various sinusoidal inputs, these parameters can be iden-
tified (see, for instance, Baumgartner & Rugh, 1975). This requires
that both the order of the polynomial input transformation and the
order of the system are known. When these are unavailable, the
harmonics of the output signal can be used to derive information
about the nonlinear transformation in either a parametric or a
nonparametric setting (see, for instance, Pintelon & Schoukens,
2012; Schoukens, Dobrowiecki, & Pintelon, 1998; Schoukens, Pin-
telon, Dobrowiecki, & Rolain, 2005). In parametric–nonparametric
methods, mixed descriptions are used for the components of the
cascade (in a time-domain setting). For instance, the nonlinear
transformation can be described with kernels or orthogonal series
and the linear component with polynomial models (see Greblicki,
1989; Greblicki & Pawlak, 1986; Mzyk, 2007). An effective method
based on maximum likelihood has been proposed in Wills, Schön,
Ljung, and Ninness (2013).

Besides a few exceptions (such as Pillonetto and Chiuso, 2009;
Pillonetto, Quang, and Chiuso, 2011b; Risuleo, Bottegal, and Hjal-
marsson, 2015a), inmost of the aforementionedworks the authors
consider parametricmodels for the LTI block of theHS,with known
model order. Also, in many cases, the authors consider polynomial
models for the nonlinear transformation, with known order. If the
model structure and orders are unknown, which might be the case
in many applications, we have to use complexity criteria such as
AIC, BIC, or cross validation (Ljung, 1999); however, the choice of
the best model is in general a very difficult problem.

In this paper, we extend the preliminary work presented
in Risuleo et al. (2015a). In that work, we considered HS with
FIR models for the linear system and basis-function models for
the static nonlinearity. The approach in Risuleo et al. (2015a)
is, thus, limited to models where the noise is white and where
the static nonlinearity is well represented by a model that is a
linear combination of known basis functions. In this work, we
relax the first modeling restriction by allowing for models with
colored noise for the linear system (such as ARX, ARMAX, and Box–
Jenkins models). To allow this relaxation, we use a nonparametric
modeling approach where we model the impulse responses of the
system in predictor form using Gaussian processes. We also relax
the second modeling restriction by modeling the static nonlinear-
ity with a Gaussian process.

To estimate the model, we follow an empirical Bayes (Maritz &
Lwin, 1989) approach and we find an approximation of the poste-
rior mean of the predictor impulse responses. This approximation
depends on the parameters of the Gaussian-process model and
on the noise variance (the hyperparameters), as well as on the
input nonlinearity. To find these unknowns, we use a variation
of the marginal-likelihood criterion. We maximize the likelihood
of the data after integrating out the predictor impulse responses;
the resulting problem is a joint maximum-a-posteriori/maximum
likelihood problem (JMAP-ML, see Yeredor, 2000). The proposed
procedure is reminiscent of the marginal-likelihood approach for
hyperparameter tuning in LTI system identification (Pillonetto
& Chiuso, 2015); however, the presence of the static nonlinear-
ity complicates the solution of the JMAP-ML problem, because
of the large number of decision variables. To overcome this, we
design a new iterative solution scheme based on an extension
of the expectation–maximization (EM) method (McLachlan &

Fig. 1. Block scheme of the HS studied in this paper.

Krishnan, 2007), known as expectation-conditional maximization
(ECM, see Meng & Rubin, 1993). In this way, we obtain a series
of update rules for the estimates of the static nonlinearity and the
hyperparameters. Except for one of the kernel hyperparameters,
whose update is a scalar optimization over a finite domain, all the
updates are available in closed-form.

It is worth stressing that Bayesian kernel-based methods using
the stable spline kernel are not new in nonlinear system iden-
tification (see for instance Pillonetto & Chiuso, 2009; Pillonetto
et al., 2011b; Risuleo et al., 2015a). The method in Pillonetto et
al. (2011b) is a fully nonparametric Bayesian method that can be
used to identify any nonlinear model, without postulating specific
structure. It works by identifying the model in nonlinear predictor
form as a functional relationship between past inputs and the
current output; however, it is not tuned specifically for theHS. Also
themethod in Pillonetto and Chiuso (2009) is fully nonparametric,
this time specific for the Wiener–Hammerstein model structure—
that is, a static nonlinearity sandwiched between two linear time-
invariant models. In contrast with the present work it does not
involve a marginalization step and thus cannot rely on the robust-
ness properties of the empirical Bayes paradigm (see Wahba, 1990,
Chap. 4 and Pillonetto and Chiuso, 2015).

The paper is organized as follows. In Section 2, we formulate
the problem of system identification for the HS. In Section 3, we
review the empirical Bayes approximation for the identification
of the linear part of the system. In Section 4, we show the JMAP-
ML criterion for the identification of the static nonlinearity and
of the hyperparameters. In Section 5, we propose an ECM based
algorithm to find the HS estimate. In Section 6, we compare, using
simulations, our algorithm to standard system-identification tools
for nonlinear systemmodeling. In Section 7,we give some conclud-
ing remarks. Appendix A contains the proofs of the main results.

2. Problem formulation

TheHSwe consider in this paper is the block-oriented nonlinear
system structure given in Fig. 1. It is the cascade composition
of a static nonlinear function f (·) and a linear system S. In our
formulation the system S is a LTI discrete-time dynamic system
(the linear system). We assume that the linear system is causal and
exponentially stable. The linear system is fed by the input {wt} (un-
available to the experimenter), which is obtained by transforming
the known input signal {ut} through the static nonlinear map f (·)
(the static nonlinearity).

The dynamics of the HS considered in this paper are described
by

yt =

∞∑
k=0

gkwt−k +

∞∑
k=0

hket−k , h0 = 1,

wt = f (ut ) ,

(1)

so that the linear system S is a general Box–Jenkins model, where
{gk}∞k=0 and {hk}

∞

k=0 are the impulse responses of the causal and
exponentially stable filters G and H (with H minimum phase),
and {et} zero-mean white Gaussian noise with unknown variance.
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